首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We examined the effect of angiotensin II (ANG II) on epithelial Na(+) channel (ENaC) in the rat cortical collecting duct (CCD) with single-channel and the perforated whole cell patch-clamp recording. Application of 50 nM ANG II increased ENaC activity, defined by NP(o) (a product of channel numbers and open probability), and the amiloride-sensitive whole cell Na currents by twofold. The stimulatory effect of ANG II on ENaC was absent in the presence of losartan, suggesting that the effect of ANG II on ENaC was mediated by ANG II type 1 receptor. Moreover, depletion of intracellular Ca(2+) with 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA)-AM failed to abolish the stimulatory effect of ANG II on ENaC but inhibiting protein kinase C (PKC) abolished the effect of ANG II, suggesting that the effect of ANG II was the result of stimulating Ca(2+)-independent PKC. This notion was also suggested by the experiments in which stimulation of PKC with phorbol ester derivative mimicked the effect of ANG II and increased amiloride-sensitive Na currents in the principal cell, an effect that was not abolished by treatment of the CCD with BAPTA-AM. Also, inhibition of NADPH oxidase (NOX) with diphenyleneiodonium chloride abolished the stimulatory effect of ANG II on ENaC and application of superoxide donors, pyrogallol or xanthine and xanthine oxidase, significantly increased ENaC activity. Moreover, addition of ANG II or H(2)O(2) diminished the arachidonic acid (AA)-induced inhibition of ENaC in the CCD. We conclude that ANG II stimulates ENaC in the CCD through a Ca(2+)-independent PKC pathway that activates NOX thereby increasing superoxide generation. The stimulatory effect of ANG II on ENaC may be partially the result of blocking AA-induced inhibition of ENaC.  相似文献   

2.
A functional renin-angiotensin system (RAS) is required for normal kidney development. Neonatal inhibition of the RAS in rats results in long-term pathological renal phenotype and causes hyaluronan (HA), which is involved in morphogenesis and inflammation, to accumulate. To elucidate the mechanisms, intrarenal HA content was followed during neonatal completion of nephrogenesis with or without angiotensin converting enzyme inhibition (ACEI) together with mRNA expression of hyaluronan synthases (HAS), hyaluronidases (Hyal), urinary hyaluronidase activity and cortical lymphatic vessels, which facilitate the drainage of HA from the tissue. In 6-8 days old control rats cortical HA content was high and reduced by 93% on days 10-21, reaching adult low levels. Medullary HA content was high on days 6-8 and then reduced by 85% to 12-fold above cortical levels at day 21. In neonatally ACEI-treated rats the reduction in HA was abolished. Temporal expression of HAS2 corresponded with the reduction in HA content in the normal kidney. In ACEI-treated animals cortical HAS2 remained twice the expression of controls. Medullary Hyal1 increased in controls but decreased in ACEI-treated animals. Urine hyaluronidase activity decreased with time in control animals while in ACEI-treated animals it was initially 50% lower and did not change over time. Cells expressing the lymphatic endothelial mucoprotein podoplanin in ACEI-treated animals were increased 18-fold compared to controls suggesting compensation. In conclusion, the high renal HA content is rapidly reduced due to reduced HAS2 and increased Hyal1 mRNA expressions. Normal angiotensin II function is crucial for inducing these changes. Due to the extreme water-attracting and pro-inflammatory properties of HA, accumulation in the neonatally ACEI-treated kidneys may partly explain the pathological renal phenotype of the adult kidney, which include reduced urinary concentration ability and tubulointerstitial inflammation.  相似文献   

3.
Angiotensin II stimulated the activity of phosphorylase a (EC50 approximately 3 nM). The effect of two receptor subtype-selective nonpeptide antagonists, DuP 753 (AII-1 selective) and PD123177 (AII-2 selective), was studied. It was observed that DuP 753 inhibited the effect of angiotensin II (IC50 100 nM) but in contrast, PD123177 was without effect on this action of the peptide hormone. Angiotensin II stimulated the labeling of phosphatidylinositol (resynthesis) and the release of inositol phosphates (breakdown). These effects of angiotensin II were blocked by DuP 753 but not by PD123177. The antagonists were without effect by themselves on these parameters. The results clearly indicate that angiotensin II receptors of the AII-1 subtype are coupled to phosphoinositide turnover and mediate phosphorylase activation in isolated rat hepatocytes.  相似文献   

4.
Angiotensin II (Ang II) has been shown to regulate growth in smooth muscle cells. Protein kinase C (PKC), which mediates Ang II action, has been implicated in myocardial cell hypertrophy. Acute pressure overload in the left ventricles has been demonstrated to produce prostaglandin F2 alpha (PGF2alpha) release. Therefore, we used cultured neonatal rat ventricular myocytes to study Ang II, PKC and PGF2alpha and their relationship to hypertrophy. The amount of PGF2alpha produced was determined by radioimmunoassay, Ang II-induced hypertrophy and PGF2alpha release. Pretreatment with 10(-6) M of PKC inhibitor, 1-(5-isoquinolinesulfonyl-methyl) piperazine (H7), blocked Ang II-induced hypertrophy and PGF2alpha release. In neonatal rat ventricular myocytes that were treated with either Ang II or PKC activator (Phorbol 12, 13, dibutyrate; PDBu), PKC enzyme assay showed PKC was translocated from the cytosol to the membrane which indicates activation. This suggests that PKC mediates, in part, Ang II-induced PGF2alpha release and hypertrophy. In summary, Ang II activates PKC, which causes PGF2alpha release and hypertrophy, and this PGF2alpha release and hypertrophy can be overcome by pretreatment with PKC inhibitor.  相似文献   

5.
Angiotensin-(1-7) stimulates oxidative stress in rat kidney   总被引:2,自引:0,他引:2  
The effect of two different doses of angiotensin-(1-7) and angiotensin II on the oxidative stress generation was analyzed in rat kidney. Animals were injected intraperitoneally with a single dose of angiotensin-(1-7) or angiotensin II (20 or 50 nmol/kg body weight) and killed 3 h after injection. Production of thiobarbituric acid reactive substances (TBARS), measured as indicator of oxidative stress induction, was significantly increased in rat kidney after Ang-(1-7) administration up to 30% and 50% over controls, at 20 and 50 nmol/kg, respectively. Reduced glutathione (GSH), the most important soluble antioxidant defense in mammalian cells, showed a significant decrease of 13% and 20% at 20 and 50 nmol/kg of angiotensin-(1-7), respectively. When the antioxidant enzyme activities were determined, it was found that catalase activity was not altered by the assayed angiotensin-(1-7) doses while superoxide dismutase and glutathione peroxidase activities were significantly reduced by injection of 20 nmol/kg (34% and 13%, with respect to controls) and 50 nmol/kg of angiotensin-(1-7) (54% and 22%, respectively). In contrast, angiotensin II injections did not produce significant changes neither in TBARS levels nor in soluble and enzymatic defense parameters at the two doses used in this work. These results suggest that angiotensin-(1-7) is undoubtedly related to oxidative stress induction.  相似文献   

6.
We have examined the effects of endothelin (ET) on the renal microcirculation by in vivo microscopy using the model of the split hydronephrotic rat kidney. ET, a potent vasoconstrictor peptide synthesized by vascular endothelial cells, showed marked and long-lasting effects on glomerular blood flow and vessel diameters in various segments of the renal vascular bed. Intravenously applied ET (100 ng/min/kg) increased systemic blood pressure from 123 +/- 7 to 156 +/- 4 mm Hg, decreased glomerular blood flow by 70%, and preferentially constricted larger preglomerular vessels, e.g. the arcuate artery. The competitive leukotriene antagonist FPL55712 significantly attenuated the vasoconstrictor response of the larger vessels. Local ET administration decreased glomerular blood flow in a dose-dependent manner (50% reduction at a concentration of 2.6 +/- 0.7 x 10(-9) M) and constricted smaller vessel segments, e.g. the afferent and efferent arterioles near the glomerulus. The constriction induced by ET was not significantly affected by the Ca2+ channel blocker nitrendipine (2.8 x 10(-6) to 1.1 x 10(-5) M). We conclude that intravenous ET effects are probably mediated by leukotrienes, inducing constriction of larger renal vessels. Locally administered ET acts directly on the renal vasculature, especially on smaller vessels.  相似文献   

7.
Angiotensin II (Ang II) has been shown to cause Prostaglandin F(2 alpha)(PGF(2 alpha)) release in neonatal rat ventricular myocytes and smooth muscle cells. In these cells, Ang II has also been shown to regulate growth. We used neonatal rat ventricular myocytes to investigate the role of calcium in maintenance of Ang II-induced PGF(2 alpha)release. The amount of PGF(2 alpha)produced was determined by radioimmunoassay. Ang II-induced PGF(2 alpha)release. Pretreatment of neonatal rat ventricular myocytes with different doses (10(-8)M, 10(-7)M, 10(-6)M and 10(-5)M) of diltiazm (voltage-sensitive L-type calcium channel blocker) produced significant inhibition in Ang II-induced PGF(2 alpha)release. Inhibition was first noted at 10(-8)M and was complete at 10(-6)M. Conversely, pretreatment of neonatal rat ventricular myocytes with different doses (10(-8)M, 10(-7)M, 10(-6)M and 10(-5)M) of calcium channel blockers (conotoxin; voltage-sensitive N-type calcium channel blocker or thapsigargin; intracellular calcium channel blocker) produced no changes in Ang II-induced PGF(2 alpha)release. These results strongly suggest that Ang II-induced PGF(2 alpha)release in neonatal rat ventricular myocytes is maintained, at least in part, via increase in extracellular calcium influx.  相似文献   

8.
Angiotensin II (Ang II) elicits a variety of physiological effects through specific Ang II receptors in numerous tissues. In addition, Ang II is a modulator of cellular growth and exerts a positive or negative effect on cell growth depending on which receptor subtype is activated. Expression of the intrarenal AT2 receptors occurs at its highest levels in the fetal kidney, with a rapid decline after birth. In the present paper, we performed a study on the signaling mechanism of Ang II receptors in rat fetal (E20) kidney, a rich source of AT2 receptors, where both Ang II receptor subtypes are present. Ang II induces Tyr-dephosphorylation of proteins in rat fetal kidney membranes. The response is dose-dependent, with a reduction of 20% with respect to the control (100%), signal that is completely reversed by Ang II AT2 competitor PD123319. Orthovanadate, the inhibitor of phospho-Tyr-phosphatases (PTPase), reverts Ang II effect, suggesting the involvement of a protein tyrosine phosphatase. The peptide analog of Ang II, CGP42112, exhibits an agonist effect, which is dose-dependent. Thus, in rat fetal (E20) kidney, the Ang-induced protein Tyr-dephosphorylation of several proteins is mediated by AT2 receptors, mechanism that involves an orthovanadate sensitive PTPase.  相似文献   

9.
10.
11.
We have found that arginine vasopressin (AVP) (10 pg/ml) stimulates urinary kallikrein in the isolated erythrocyte perfused rat kidney. (In this model, perfusate flow rate approximates blood flow rates in vivo and morphology is normal.) Urinary kallikrein excretion rose from 6.9 +/- 0.8 to 14.9 +/- 2.4 ng/min 20 min after the addition of AVP to the perfusate, and then fell towards baseline levels over the next 30 min. 1-Desamino-8-D-AVP (8 pg/ml) caused a comparable increase in kallikrein excretion. Prostaglandin synthesis inhibition with indomethacin did not alter the stimulatory effect of AVP on kallikrein excretion. Parathyroid hormone 1-34 (144 ng/ml) and calcitonin (102 ng/ml) also increased urinary kallikrein. Kallikrein excretion rose from 9.1 +/- 2.0 to 24 +/- 4.5 ng/min in response to calcitonin and from 8.3 +/- 1.6 to 43.7 +/- 3.4 ng/min following the addition of parathyroid hormone to the perfusate. Kallikrein was found to accumulate in the perfusate in a linear fashion. Based on the slope of the relationship between perfusate kallikrein and time, the rate of release of kallikrein into the perfusate was estimated to be 0.79 ng/min in control kidneys. The rate of release of kallikrein into the perfusate in kidneys treated with AVP was the same (0.74 ng/min). Thus while kallikrein is released into the perfusate, this process is not influenced by AVP. In conclusion, AVP stimulates release of kallikrein into the urine (but not the perfusate) independently of systemic events. The effect of AVP is not mediated by prostaglandins. This effect of AVP is mediated via stimulation of the V2 receptor and also occurs in response to two other hormones (calcitonin and parathyroid hormone) that are known to stimulate adenyl cyclase in the rat distal nephron.  相似文献   

12.
13.
Regional distribution of angiotensin converting enzyme(ACE) in the rat kidney was studied. The ACE activities in the inner cortex and outer medulla were about 10 and 5 times those in the outer cortex, respectively. The activity in the inner medulla or papilla was much the same as that in the outer cortex. Immunofluorescence was greatest in the proximal tubules in the inner cortex, while the outer medulla and the inner medulla or papilla showed a weak fluorescence. The brush border membranes isolated from the inner cortex also possessed about 10 times the ACE activity seen in the outer cortex. The results indicate that the major source of renal ACE is not the proximal convoluted tubules in the outer cortex, but rather the brush border membranes of proximal tubules in the inner cortex. The contribution of ACE in the inner cortex would therefore be predominant.  相似文献   

14.
In experiments on 30 white mongrel adult rats of both sexes pathologic and reparative alterations in the kidney by the 30th day after recanalization of the ureter occluded for 1, 3, 7, 10, 15, 30 days have been studied using microdissection, light optic and electron microscopic methods. The fact has been established that in early times of HT (1 to 3 days) with the following reduction of urinary passage through the ureter (30 days), the canalicular-vascular formations of the kidney acquire normal morphological structure. In cases of more prolonged occlusion of the ureter (15 to 30 days) in the kidney noticeable destructive alterations prevail with replacement of parenchymatous elements by connective tissue.  相似文献   

15.
16.
Angiotensin II receptors in the kidney   总被引:3,自引:0,他引:3  
Angiotensin II (AngII) receptors have been localized in rat kidney by using the high-affinity agonist analog 125I-labeled [Sar1]AngII as a probe for in vitro autoradiography. Receptors were associated with four morphologically distinct patterns of distribution. First, a high density of receptors occurs in glomeruli. These are diffusely distributed, consistent with a mesangial localization. AngII receptor density shows a cortical gradient, which is highest in superficial and midcortical glomeruli and lowest in juxtamedullary glomeruli. Receptors associated with both superficial and deep glomeruli show down-regulation during low-sodium intake. Second, low levels of tubular AngII binding were seen in the outer cortex. Third, a very high density of AngII receptors occurs in longitudinal bands in the inner zone of the outer medulla in association with vasa recta bundles. Receptors in this site also show down-regulation during low dietary sodium intake. Fourth, a moderate density of receptors occurs diffusely throughout the inner zone of the outer medulla in the interbundle areas. These results suggest that AngII exerts a number of different intrarenal regulatory actions. In addition to the known vascular, glomerular, and proximal tubular effects of AngII, these findings focus attention on possible actions of AngII in the renal medulla where it could regulate medullary blood flow and thereby modify the function of the countercurrent concentrating system.  相似文献   

17.
18.
Spontaneously hypertensive rats (SHR) have an activated brain angiotensin system. We hypothesized 1) that ventilation (V) would be greater in conscious SHR than in control Wistar-Kyoto (WKY) rats and 2) that intravenous infusion of the ANG II-receptor blocker saralasin would depress respiration in SHR, but not in WKY. Respiration and oxygen consumption (VO(2)) were measured in conscious aged-matched groups (n = 16) of adult female SHR and WKY. For protocol 1, rats were habituated to a plethysmograph and measurements obtained over 60-75 min. After installation of chronic intravenous catheters, protocol 2 consisted of 30 min of saline infusion ( approximately 14 microliter. kg(-1). min(-1)) followed by 40 min of saralasin (1.3 microgram. kg(-1). min(-1)). V, tidal volume (VT), inspiratory flow [VT/inspiratory time (TI)], breath expiratory time, and VO(2) were higher, and breath TI was lower in "continuously quiet" SHR. In SHR, but not in WKY rats, ANG II-receptor block decreased V, VT, and VT/TI and increased breath TI. During ANG II-receptor block, an average decrease in VO(2) in SHR was not significant. About one-half of the higher V in SHR appears to be accounted for by an ANG II mechanism acting either via peripheral arterial receptors or circumventricular organs.  相似文献   

19.
Chronic allograft nephropathy (CAN) represents a frequent and irreversible cause of long-term renal graft loss. TGF-beta1 is a key profibrogenic cytokine associated with CAN pathogenesis. Because of clinical diagnostic inaccuracy, protocol biopsy has been suggested to be a beneficial method for early CAN detection. Protocol core biopsy was carried out in 67 consecutive cyclosporine-based immunosuppression-treated kidney transplant recipients with stable renal function 12 months after renal transplantation. Biopsy specimens were analyzed morphologically according to Banff-97' criteria and immunohistologically for TGF-beta1 staining. The data obtained were correlated with plasma TGF-beta1 levels and clinical data. CAN (grade I-III) was found in 51 patients (76 %). CAN grade I was found to be the most frequent one (44 %). A normal finding within the graft was made in only 12 patients (18 %). Clinically silent acute rejection Banff IA was present in 4 patients (6 %). In 8 patients (12 %) with CAN, borderline changes were present. We found a significant correlation between CAN grade and creatinine clearance, as measured by the Cockroft-Gault formula (p<0.01) as well as body mass index (p<0.01). There was a significant correlation between chronic vasculopathy (Banff cv) and creatinine clearance, and between the degree of TGF-beta1 staining and chronic vasculopathy (p<0.01). There were no relations between morphological findings and TGF-beta1 plasma levels, cyclosporine levels, plasma lipids, HLA-mismatches, panel reactive antibodies (PRA), proteinuria, and the donor's age. In conclusion, CAN is a frequent finding in protocol kidney graft biopsies 12 months after transplantation. TGF-beta1 tissue expression is linked with chronic vasculopathy.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号