首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel plasminogen-binding protein has been isolated from human plasma utilizing plasminogen-Sepharose affinity chromatography. This protein copurified with alpha 2 antiplasmin when the plasminogen affinity column was eluted with high concentrations of epsilon-aminocaproic acid (greater than 20 mM). Analysis by sodium dodecyl sulfate suggests this protein has an apparent Mr of 60,000. The amino-terminal amino acid sequence showed no similarity to other protein sequences. Based on the amino-terminal amino acid sequence, oligonucleotide probes were designed for polymerase chain reaction primers, and an approximately 1,800 base pair cDNA was isolated that encodes this Mr 60,000 protein. The deduced amino acid sequence reveals a primary translation product of 423 amino acids that is very similar to carboxypeptidase A and B and consists of a 22-amino acid signal peptide, a 92-amino acid activation peptide, and a 309-amino acid catalytic domain. This protein shows 44 and 40% similarity to rat procarboxypeptidase B and human mast cell procarboxypeptidase A, respectively. The residues critical for catalysis and zinc and substrate binding of carboxypeptidase A and B are conserved in the Mr 60,000 plasminogen-binding protein. The presence of aspartic acid at position 257 of the catalytic domain suggests that this protein is a basic carboxypeptidase. When activated by trypsin, it hydrolyzes carboxypeptidase B substrates, hippuryl-Arg and hippuryl-Lys, but not carboxypeptidase A substrates, and it is inhibited by the specific carboxypeptidase B inhibitor (DL-5-guanidinoethyl)mercaptosuccinic acid. We propose that the Mr 60,000 plasminogen-binding protein isolated here is a novel human plasma carboxypeptidase B and that it be designated pCPB.  相似文献   

2.
A method is presented for the simple identification of C-terminal fragment of proteins. The method consists of (i) C-terminal processing of a protein by carboxypeptidase and (ii) comparative peptide mapping of the intact and carboxypeptidase-excised protein after fragmentation by endoproteinase or by chemical cleavage. The peptide mapping was performed by means of high-performance reversed-phase chromatography, where the C-terminal fragment was identified as a peptide peak that was lost or decreased in the carboxypeptidase-excised protein. The C-terminal sequence of the protein could be then determined by sequential Edman degradation of the C-terminal fragment collected from the peptide mapping chromatography. The sensitivity of the method depends solely on the peptide detection and subsequent Edman degradation, currently available techniques of which require a nanomole to subnanomole quantity of protein. The present method can be coupled with conventional carboxypeptidase technology because it utilizes a protein portion remaining after carboxypeptidase digestion while released amino acids are needed in the conventional technique. The method would be particularly valuable in finding a gene probe site for a RNA message coding for the C-terminal portion of a molecule.  相似文献   

3.
Carboxypeptidase M, a widely distributed membrane-bound carboxypeptidase that can regulate peptide hormone activity, was purified to homogeneity from human placenta (Skidgel, R. A., Davis, R. M., and Tan, F. (1989) J. Biol. Chem. 264, 2236-2241). The NH2-terminal 31 amino acids were sequenced, and two complementary oligonucleotide probes were synthesized and used to isolate a carboxypeptidase M clone from a human placental cDNA library. Sequencing of the cDNA insert (2009 base pairs) revealed an open reading frame of 1317 base pairs coding for a protein of 439 residues. The NH2-terminal protein sequence matched the deduced amino acid sequence starting with residue 14. Hydropathic analysis revealed hydrophobic regions at the NH2 and COOH termini. The NH2-terminal 13 amino acids probably represent part of the signal peptide, and the COOH-terminal hydrophobic region may act either as a transmembrane anchor or as a signal for attachment to a phosphatidylinositol glycan moiety. The carboxypeptidase M sequence contains six potential Asn-linked glycosylation sites, consistent with its glycoprotein nature. The sequence of carboxypeptidase M was 41% identical with that of the active subunit of human plasma carboxypeptidase N, 41% identical with bovine carboxypeptidase H (carboxypeptidase E, enkephalin convertase), and 15% with either bovine pancreatic carboxypeptidase A or B. Many of the active site residues identified in carboxypeptidases A and B, including all of the zinc-binding residues (2 histidines and a glutamic acid), are conserved in carboxypeptidase M. These data indicate that all of the metallocarboxypeptidases are related, but the nondigestive carboxypeptidases with more specialized functions, present in cell membranes, blood plasma, or secretory granules (i.e., carboxypeptidase M, carboxypeptidase N and carboxypeptidase H), are more closely related to each other (41-49% identity) than they are to carboxypeptidase A or B (15-20% identity).  相似文献   

4.
Human plasma carboxypeptidase N was purified to homogeneity and its active and inactive subunits were separated. By introducing a novel technique, both forms of the active subunit (Mr = 55,000 and Mr = 48,000) were isolated. N-terminal sequencing of the active subunit of human carboxypeptidase N revealed significant homology with the N-terminal sequence of bovine carboxypeptidase H (43% identity) and to a lesser extent with carboxypeptidase A (29% identity) or carboxypeptidase B (18% identity). The active subunit of carboxypeptidase N was hydrolyzed with trypsin and 4 of the tryptic peptides were isolated by HPLC and sequenced. The sequences of the four peptides were homologous (39-64% identity) with regions of carboxypeptidase H corresponding to the middle (residues 148-175) and C-terminal portion (residues 321-408). These regions had essentially no homology with carboxypeptidase A or B. These data indicate that carboxypeptidase H and the active subunit of carboxypeptidase N may have diverged from a common ancestral gene.  相似文献   

5.
Carboxypeptidase B of the human pancreas was purified by chromatography on DEAE-cellulose and CM-cellulose columns. Two forms of the enzyme, named carboxypeptidase B1 and B2, were separated. They have similar mol.wts. (34250 +/- 590) as established by polyacrylamide-gel disc electrophoresis and by gel filtration. Carboxypeptidase B2 migrates further towards the anode in disc electrophoresis. When the amino acid content of the enzymes was analysed, carboxypeptidase B2 had four more glycine and three more aspartic acid residues than had form B1. The amino acid sequence of the human carboxypeptidase B1 differs from that of the bovine enzyme only in two places in the N-terminal 20-amino-acid sequence. The N-terminal amino acid in carboxypeptidase B1 and B2 is alanine. The peptide 'map' of the tryptic digest of carboxypeptidase B1 contained more peptides than did that of form B2. The Km, the Vmax. and the pH optimum of the cleavage of the peptide substrate hippurylarginine and the ester substrate hippurylargininic acid were similar for both enzymes. CoCl2 accelerated the peptidase activity, and cadmium acetate enhanced the esterase activity, of human carboxypeptidases B1 and B2. Urea and sodium dodecyl sulphate inhibited the enzymes.  相似文献   

6.
7.
The amino acid sequence of rat mast cell carboxypeptidase has been determined. The major form has 308 residues; a minor form has an additional (glutamyl) residue at the amino terminus that may indicate an alternate cleavage site during zymogen activation. The enzyme is homologous to pancreatic carboxypeptidases A and B, with conservation of the functional amino acid residues of the active site. The putative substrate binding site resembles that of carboxypeptidase A, although other structural features bear more similarity to carboxypeptidase B. Mast cell carboxypeptidase retains enzymatic activity toward a peptide substrate (angiotensin I) while bound within the granular matrix of the rat connective tissue mast cells. Evidence is presented to suggest that a cluster of positively charged lysyl and arginyl residues binds the enzyme to the negatively charged heparin of the granular matrix but leaves the active site exposed to bind and cleave peptide substrates.  相似文献   

8.
Mast cell carboxypeptidase A has been isolated from the secretory granules of mouse peritoneal connective tissue mast cells (CTMC) and from a mouse Kirsten sarcoma virus-immortalized mast cell line (KiSV-MC), and a cDNA that encodes this exopeptidase has been cloned from a KiSV-MC-derived cDNA library. KiSV-MC-derived mast cell carboxypeptidase A was purified with a potato-derived carboxypeptidase-inhibitor affinity column and was found by analytical sodium dodecyl sulfate-polyacrylamide gel electrophoresis to be a Mr 36,000 protein. Secretory granule proteins from KiSV-MC and from mouse peritoneal CTMC were then resolved by preparative sodium dodecyl sulfate-polyacrylamide gel electrophoresis and transblotted to polyvinylidine difluoride membranes. Identical aminoterminal amino acid sequences were obtained for the prominent Mr 36,000 protein present in the granules of both cell types. Based on the amino-terminal sequence, an oligonucleotide probe was synthesized and used to isolate a 1,470-base pair cDNA that encodes this mouse exopeptidase. The deduced amino acid sequence revealed that, after cleavage of a 15-amino acid hydrophobic signal peptide and a 94-amino acid activation peptide from a 417-amino acid preproenzyme, the mature mast cell carboxypeptidase A protein core has a predicted Mr of 35,780 and a high positive charge [Lys + Arg) - (Asp + Glu) = 17) at neutral pH. Although critical zinc-binding amino acids (His67, Glu70, His195), substrate-binding amino acids (Arg69, Asn142, Arg143, Tyr197, Asp255, Phe278), and cysteine residues that participate in intrachain disulfide bonds (Cys64-Cys77, Cys136-Cys159) of pancreatic carboxypeptidases were also present in mast cell carboxypeptidase A, the overall amino acid sequence identities for mouse mast cell carboxypeptidase A relative to rat pancreatic carboxypeptidases A1, A2, and B were only 43, 41, and 53%, respectively. RNA and DNA blot analyses revealed that mouse peritoneal CTMC, KiSV-MC, and bone marrow-derived mast cells all express a prominent 1.5-kilobase mast cell carboxypeptidase A mRNA which is transcribed from a single gene. We conclude that mouse mast cell carboxypeptidase A is a prominent secretory granule enzyme of mast cells of the CTMC subclass and represents a novel addition to the carboxypeptidase gene family.  相似文献   

9.
A human pancreas-specific protein (PASP), previously characterized as a serum marker for acute pancreatitis and pancreatic graft rejection, has been identified as pancreatic procarboxypeptidase B (PCPB). cDNAs encoding PASP/PCPB were isolated from a human pancreas cDNA library using a combination of nucleic acid hybridization screening and immunoscreening with antisera raised against native PASP. The deduced amino acid sequence of PASP/PCPB cDNA predicts the translation of a 416-amino acid preproenzyme with a 15-amino acid signal/leader peptide and a 95-amino acid activation peptide. The proenzyme portion of this protein has 76% identity with rat PCPB and 84% identity with bovine carboxypeptidase B. DNA and RNA blot analyses indicate that human PCPB mRNA (1,400 nucleotides) is transcribed from a single locus in the human genome in a tissue-specific fashion. N-terminal sequencing of native PASP and the specific immunoreactivity of bacterially expressed PASP/PCPB with native PASP antibodies confirm the identification of PASP as human pancreatic PCPB.  相似文献   

10.
11.
Carboxypeptidase A and carboxypeptidase B activities from the midgut of Trichoplusia ni larvae were characterized. In the T. ni larval midgut, the primary digestive carboxypeptidase activity was attributed to carboxypeptidase A, which was eight times more active than carboxypeptidase B. Both the midgut carboxypeptidase A and carboxypeptidase B exhibited maximal activities at pH 8.0-8.5 and were similarly susceptible to inhibition by potato carboxypeptidase inhibitor and phenanthroline. The midgut carboxypeptidase activities were analyzed in T. ni larvae fed on various diet sources and the results indicated that midgut carboxypeptidase activities per milligram of gut were similar regardless of the amount of dietary proteins or amino acids. However, midgut carboxypeptidase A activity was significantly higher in larvae exposed to soybean trypsin inhibitor and was significantly lower in larvae fed on broccoli foliage. From the T. ni larval midgut, five putative carboxypeptidase cDNAs were cloned, demonstrating that midgut carboxypeptidase activities are composed of multiple carboxypeptidase types. Sequence analysis indicated that the midgut carboxypeptidases were produced as secreted proenzymes which could be activated after removal of an N-terminal activation fragment by a trypsin. Two cloned cDNAs are predicted to code for carboxypeptidase A and one cDNA is predicted to code for a putative carboxypeptidase B. The other two cDNAs are highly similar to carboxypeptidase A and carboxypeptidase B in sequences, but their activity was not predictable.  相似文献   

12.
It has been proposed that penicillin and other beta-lactam antibiotics are substrate analogs which inactivate certain essential enzymes of bacterial cell wall biosynthesis by acylating a catalytic site amino acid residue (Tipper, D.J., and Strominger, J.L. (1965) Proc. Natl. Acad. Sci. U.S.A. 54, 1133-1141). A key prediction of this hypothesis, that the penicilloyl moiety and an acyl moiety derived from substrate both bind to the same active site residue, has been examined. D-Alanine carboxypeptidase, a penicillin-sensitive membrane enzyme, was purified from Bacillus subtilis and labeled covalently at the antibiotic binding site with [14C]penicillin G or with the cephalosporin [14C]cefoxitin. Alternatively, an acyl moiety derived from the depsipeptide substrate [14C]diacetyl L-Lys-D-Ala-D-lactate was trapped at the catalytic site in near-stoichiometric amounts by rapid denaturation of an acyl-enzyme intermediate. Radiolabeled peptides were purified from a pepsin digest of each of the 14C-labeled D-alanine carboxypeptidases and their amino acid sequences determined. Antibiotic- and substrate-labeled peptic peptides had the same sequence: Tyr-Ser-Lys-Asn-Ala-Asp-Lys-Arg-Leu-Pro-Ile-Ala-Ser-Met. Acyl moieties derived from antibiotic and from substrate were shown to be bound covalently in ester linkage to the identical amino acid residue, a serine at the penultimate position of the peptic peptide. These studies establish that beta-lactam antibiotics are indeed active site-directed acylating agents. Additional amino acid sequence data were obtained by isolating and sequencing [14C]penicilloyl peptides after digestion of [14C]penicilloyl D-alanine carboxypeptidase with either trypsin or cyanogen bromide and by NH2-terminal sequencing of the uncleaved protein. The sequence of the NH2-terminal 64 amino acids was thus determined and the active site serine then identified as residue 36. A computer search for homologous proteins indicated significant sequence homology between the active site of D-alanine carboxypeptidase and the NH2-terminal portion of beta-lactamases. Maximum homology was obtained when the active site serine of D-alanine carboxypeptidase was aligned correctly with a serine likely to be involved in beta-lactamase catalysis. These findings provide strong evidence that penicillin-sensitive D-alanine carboxypeptidases and penicillin-inactivating beta-lactamases are related evolutionarily.  相似文献   

13.
A new coding sequence of the procarboxypeptidase B gene was obtained from SD rat fresh pancreas by RT-PCR and highly expressed in Escherichia coli in inclusion bodies. The folded procarboxypeptidase B was subjected to trypsin enzymatic cleavage to produce active carboxypeptidase B, subsequently, carboxypeptidase B was effectively purified with anion exchange chromatography DEAE-FF and hydrophobic interaction chromatography Octyl FF, as a result, 40 mg carboxypeptidase B per litre cell culture with specific activity 7.42 u/mg was achieved. Further research showed that the obtained recombinant carboxypeptidase B could substitute carboxypeptidase B isolated from pancreas.  相似文献   

14.
Carboxypeptidase T, an extracellular carboxypeptidase from Thermoactinomyces sp. was isolated and purified by affinity chromatography on bacitracin adsorbents. The enzyme homogeneity was established by SDS electrophoresis (Mr = 38 000) and isoelectrofocusing in PAAG (pI 5.3). Carboxypeptidase T reveals a mixed specificity in comparison with pancreatic carboxypeptidases A and B and cleaves with nearly the same efficiency the peptide bonds formed by the C-terminal residues of basic and neutral hydrophobic amino acids. The enzyme is insensitive to serine and thiol proteinase inhibitors but is completely inhibited by EDTA and o-phenanthroline. The maximal enzyme activity is observed at pH 7-8. With an increase of temperature from 20 to 70 degrees C the enzyme activity is enhanced approximately 10-fold. In the presence of 1 mM Ca2+ the enzyme thermostability is also increased. In terms of some properties, e.g. substrate specificity carboxypeptidase T is similar to metallocarboxypeptidase secreted by Streptomyces griseus. The N-terminal sequence of carboxypeptidase T: Asp-Phe-Pro-Ser-Tyr-Asp-Ser-Gly- Tyr-His-Asn-Tyr-Asn-Glu-Met-Val-Asn-Lys-Ile-Asn-Thr-Val-Ala-Ser-Asn-Tyr- Pro-Asn - Ile-Val-Lys-Thr-Phe-Ser-Ile-Gly-Lys-Val-Tyr-Glu-Gly-Xaa-Gly-Leu- coincides by 21% with that of pancreatic carboxypeptidases A and B. Thus, it may be concluded that these enzymes originate from a common precursor.  相似文献   

15.
A method for improved sequence coverage in C-terminal sequencing of peptides, based on carboxypeptidase digestion, is described. In conventional carboxypeptidase digestions, the peptide substrate is usually extensively degraded and a full amino acid sequence cannot be obtained due to the lack of a complete peptide ladder. In the presented method, a protecting group is introduced at the C terminus of a fraction of the peptide fragments formed in the digest, and thereby further degradation of the C-terminally modified peptides are slowed down. The protecting group was attached to the C-terminal amino acid through a carboxypeptidase-catalyzed reaction with an alternative nucleophile, 2-pyridylmethylamine, added to the aqueous digestion buffer. Six peptides were digested by carboxypeptidase Y with and without 2-pyridylmethylamine present in the digest buffer, and the resulting fragments subsequently were analyzed with matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS). Comparison of the two digestion methods showed that the probability of successful ladder sequencing increased, by more than 50% using 2-pyridylmethylamine as a competing nucleophile in carboxypeptidase Y digests.  相似文献   

16.
The complete covalent structure of protein C, a protein degraded during germination of Bacillus megaterium spores, has been determined. The intact protein was cleaved with a highly specific spore protease into two peptides, residues 1 to 30 and 31 to 71. The intact protein was also cleaved by cyanogen bromide into two peptides, residues 1 to 27 and 28 to 71. Cleavage of the larger cyanogen bromide peptide with trypsin allowed isolation of the COOH-terminal peptide, residues 59 to 71. Automated sequenator analysis of the intact protein and peptide fragments, together with previously published partial sequence data on this protein and carboxypeptidase A digestion of the intact protein provided data from which the following unique sequence was deduced: (formula: see text). The primary sequence of the C protein shows an extremely high degree of homology with that of the A protein--another protein degraded during germination of B. megaterium spores.  相似文献   

17.
Amino terminal fragments of human progastrin from gastrinoma   总被引:2,自引:0,他引:2  
Two peptides which copurified from a human gastrinoma were found to correspond to the amino acid sequence deduced for the amino terminal portion of human and porcine progastrin. The sequence of peptide A is Ser-Trp-Lys-Pro-Arg-Ser-Gln-Gln-Pro-Asp-Ala-Pro-Leu-Gly-Thr-Gly-Ala-Asn- Arg-Asp-Leu-Glu-Leu which is identical to an amino terminal portion of human progastrin. The sequence of peptide. B is identical to that of peptide A except it is missing the first five amino acids. If peptide A corresponds to the amino terminus of progastrin, the signal peptidase cleaves at an Ala-Ser bond.  相似文献   

18.
Phosphorylation of beta-crystallin B2 (beta Bp) in the bovine lens   总被引:1,自引:0,他引:1  
Three major 32P-labeled polypeptides were found in the soluble fraction of bovine lenses cultured in a medium containing [32P]orthophosphate. Two of the polypeptides corresponded to the phosphorylated A and B chains of alpha-crystallin. In this communication, the third polypeptide is now identified. This polypeptide is characterized by a molecular weight of 27,000 and a pI of 6.6, eluted exclusively in the beta Low fraction of a CL-6B gel filtration separation of lens soluble material, and could be further purified by DE52 anion exchange chromatography. The only 32P-labeled amino acid detected was phosphoserine. A single 32P-labeled peptide was observed after tryptic digestion and two-dimensional mapping. The amino acid sequence of the purified peptide is Gly-Ala-Phe-His-Pro-Ser-Ser. This sequence exactly matches the expected C-terminal tryptic fragment, residues 198-204, of the bovine beta-crystallin B2. The results of carboxypeptidase A digestion of the 32P-labeled peptide suggest that only Ser203 is phosphorylated. By using the catalytic subunit of the cAMP-dependent protein kinase, purified beta B2 was phosphorylated in vitro, generating a single 32P-labeled polypeptide with the identical pI as the phosphorylated polypeptide obtained from lens culture. On the basis of these data, the Mr 27,000 32P-labeled polypeptide is identified as the phosphorylated form of the beta-crystallin B2.  相似文献   

19.
Mojave toxin, a heterodimeric, neurotoxic phospholipase complex from Crotalus scutulatus scutulatus, is one of a group of closely related rattlesnake toxins for which much structural information is still lacking. The complete amino-acid sequence of the acidic subunit from Mojave toxin was determined. The three individual peptide chains, derived from the acidic subunit by reductive alkylation, were separated by high-performance liquid chromatography. Fragmentations of the A and B chains were done using specific proteinases and the resulting peptide mixtures were fractionated by reverse-phase high-performance liquid chromatography. Sequence analyses on the intact chains and the fragments from digests were done by automated Edman degradation, carboxypeptidase Y degradation and triple-quadrupole and tandem-quadrupole Fourier-transform mass spectrometry. The sequence for each acidic subunit chain is very similar to the corresponding chain from the related neurotoxin complex, crotoxin, and overall the sequence is similar to the sequences of group I and II phospholipases A2. The N-terminus of the B chain is blocked by pyroglutamic acid. The existence of two distinct and closely related C chains was established. It is unlikely that the small sequence difference can account for the isoforms that are present in purified Mojave toxin and in unfractionated venom.  相似文献   

20.
Carboxypeptidases were purified from guts of larvae of corn earworm (Helicoverpa armigera), a lepidopteran crop pest, by affinity chromatography on immobilized potato carboxypeptidase inhibitor, and characterized by N-terminal sequencing. A larval gut cDNA library was screened using probes based on these protein sequences. cDNA HaCA42 encoded a carboxypeptidase with sequence similarity to enzymes of clan MC [Barrett, A. J., Rawlings, N. D. & Woessner, J. F. (1998) Handbook of Proteolytic Enzymes. Academic Press, London.], but with a novel predicted specificity towards C-terminal acidic residues. This carboxypeptidase was expressed as a recombinant proprotein in the yeast Pichia pastoris. The expressed protein could be activated by treatment with bovine trypsin; degradation of bound pro-region, rather than cleavage of pro-region from mature protein, was the rate-limiting step in activation. Activated HaCA42 carboxypeptidase hydrolysed a synthetic substrate for glutamate carboxypeptidases (FAEE, C-terminal Glu), but did not hydrolyse substrates for carboxypeptidase A or B (FAPP or FAAK, C-terminal Phe or Lys) or methotrexate, cleaved by clan MH glutamate carboxypeptidases. The enzyme was highly specific for C-terminal glutamate in peptide substrates, with slow hydrolysis of C-terminal aspartate also observed. Glutamate carboxypeptidase activity was present in larval gut extract from H. armigera. The HaCA42 protein is the first glutamate-specific metallocarboxypeptidase from clan MC to be identified and characterized. The genome of Drosophila melanogaster contains genes encoding enzymes with similar sequences and predicted specificity, and a cDNA encoding a similar enzyme has been isolated from gut tissue in tsetse fly. We suggest that digestive carboxypeptidases with sequence similarity to the classical mammalian enzymes, but with specificity towards C-terminal glutamate, are widely distributed in insects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号