首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
  1. Download : Download high-res image (138KB)
  2. Download : Download full-size image
  相似文献   

2.
Heck AJ 《Nature methods》2008,5(11):927-933
Native mass spectrometry is an emerging technology that allows the topological investigation of intact protein complexes with high sensitivity and a theoretically unrestricted mass range. This unique tool provides complementary information to established technologies in structural biology, and also provides a link to high-throughput interactomics studies, which do not generate information on exact protein complex-composition, structure or dynamics. Here I review the current state of native mass spectrometry technology and discuss several important biological applications. I also describe current experimental challenges in native mass spectrometry, encouraging readers to contribute to solutions.  相似文献   

3.
  1. Download : Download high-res image (102KB)
  2. Download : Download full-size image
  相似文献   

4.
  1. Download : Download high-res image (269KB)
  2. Download : Download full-size image
  相似文献   

5.
Mass spectrometry (MS) is becoming increasingly popular in the field of structural biology for analyzing protein three-dimensional-structures and for mapping protein–protein interactions. In this review, the specific contributions of chemical crosslinking and native MS are outlined to reveal the structural features of proteins and protein assemblies. Both strategies are illustrated based on the examples of the tetrameric tumor suppressor protein p53 and multisubunit vinculin-Arp2/3 hybrid complexes. We describe the distinct advantages and limitations of each technique and highlight synergistic effects when both techniques are combined. Integrating both methods is especially useful for characterizing large protein assemblies and for capturing transient interactions. We also point out the future directions we foresee for a combination of in vivo crosslinking and native MS for structural investigation of intact protein assemblies.  相似文献   

6.
7.
8.
9.
10.
The European Proteomics Association (EuPA) 2012 Scientific Congress ‘New Horizons and Applications for Proteomics’, hosted by the British Society for Proteome Research (BSPR)

Glasgow, Scotland, UK, 12 July 2012

Cross-linking/mass spectrometry ended decades of method developments and entered the era of applications at this year’s European Proteomics Association meeting. The train has started moving, with successful applications of this tool by multiple pioneering laboratories addressing biological and structural problems. Proteomics, on the other side, sees ever increasing data volumes, leading to questions as to how to store the data mountain publically, use it and convert it into testable hypotheses. The European Proteomics Association meeting has been complementary to the American Society for Mass Spectrometry meeting in many ways, also thanks to its more manageable size and the vision of the organizers in inviting some of Europe’s best emerging minds.  相似文献   

11.
12.
Protein identification using automated data-dependent tandem mass spectrometry (MS/MS) is now a standard procedure. However, in many cases data-dependent acquisition becomes redundant acquisition as many different peptides from the same protein are fragmented, whilst only a few are needed for unambiguous identification. To increase the quality of information but decrease the amount of information, a nonredundant MS (nrMS) strategy has been developed. With nrMS, data analysis is an integral part of the overall MS acquisition and analysis, and not an endpoint as typically performed. In this nrMS workflow a matrix assisted laser desorption/ionization-time of flight-time of flight (MALDI-TOF/TOF) instrument is used. MS and restricted MS/MS data are searched and identified proteins are used to generate an "exclusion list", after in silico digestion. Peptide fragmentation is then restricted to only the most intense ions not present in the exclusion list. This process is repeated until all peaks are accounted for or the sample is consumed. Compared to nanoLC-MS/MS, nrMS yielded similar results for the analysis of six pooled two-dimensional electrophoresis (2-DE) spots. In comparison to standard data-dependent MALDI-MS/MS for sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) gel band analysis, nrMS dramatically increased the number of identified proteins. It was also found that this new workflow significantly increased sequence coverage by identifying unexpected peptides, which can result from post-translational modifications.  相似文献   

13.
14.
Over the past two decades, mass spectrometry (MS) has emerged as a bone fide approach for structural biology. MS can inform on all levels of protein organization, and enables quantitative assessments of their intrinsic dynamics. The key advantages of MS are that it is a sensitive, high-resolution separation technique with wide applicability, and thereby allows the interrogation of transient protein assemblies in the context of complex mixtures. Here we describe how molecular-level information is derived from MS experiments, and how it can be combined with spatial and dynamical restraints obtained from other structural biology approaches to allow hybrid studies of protein architecture and movements.  相似文献   

15.
Bacterial voltage-gated sodium (BacNav) channels provide insight into eukaryotic Nav channel gating, ion selectivity and pharmacology.
  相似文献   

16.
Hjerrild M  Gammeltoft S 《FEBS letters》2006,580(20):4764-4770
Protein phosphorylation is important for regulation of most biological functions and up to 50% of all proteins are thought to be modified by protein kinases. Increased knowledge about potential phosphorylation of a protein may increase our understanding of the molecular processes in which it takes part. Despite the importance of protein phosphorylation, identification of phosphoproteins and localization of phosphorylation sites is still a major challenge in proteomics. However, high-throughput methods for identification of phosphoproteins are being developed, in particular within the fields of bioinformatics and mass spectrometry. In this review, we present a toolbox of current technology applied in phosphoproteomics including computational prediction, chemical approaches and mass spectrometry-based analysis, and propose an integrated strategy for experimental phosphoproteomics.  相似文献   

17.
Mass spectrometry has come into its own as an extremely powerful tool for the study of whole proteomes. So why are not more cell biologists embracing it with open arms?  相似文献   

18.
This review will focus on ion trap mass spectrometry (ITMS) and the application of this technique to the structural analysis of carbohydrates. The basic principles of operation of the electrostatic ion traps are briefly described and the applicability of the technique to the structural characterization of carbohydrates is illustrated with the analysis of arabinoxylan oligosaccharides by ion trap mass spectrometry.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号