首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
The effect of proline, isoleucine, leucine, valine, lysine and ornithine under standard physiological conditions, on purified Vigna catjang cotyledon and buffalo liver arginases was studied. The results showed that V. catjang cotyledon arginase is inhibited by proline at a lower concentration than buffalo liver arginase and the inhibition was found to be linear competitive for both enzymes. Buffalo liver arginase was more sensitive to inhibition by branched-chain amino acids than V. catjang cotyledon. Leucine, lysine, ornithine and valine are competitive inhibitors while isoleucine is a mixed type of inhibitor of liver arginase. We have also studied the effect of manganese concentration which acts as a cofactor and leads to activation of arginase. The optimum Mn2+ concentration for Vigna catjang cotyledon arginase is 0.6 mM and liver arginase is 2.0 mM. The preincubation period required for liver arginase is 20 min at 55 degrees C, the preincubation period and temperature required for activation of cotyledon arginase was found to be 8 min at 35 degrees C. The function of cotyledon arginase in polyamine biosynthesis and a possible role of branched chain amino acids in hydrolysis of arginine in liver are discussed.  相似文献   

2.
Colleluori DM  Ash DE 《Biochemistry》2001,40(31):9356-9362
Arginases catalyze the hydrolysis of L-arginine to yield L-ornithine and urea. Recent studies indicate that arginases, both the type I and type II isozymes, participate in the regulation of nitric oxide production by modulating the availability of arginine for nitric oxide synthase. Due to the reciprocal regulation between arginase and nitric oxide synthase, arginase inhibitors have therapeutic potential in treating nitric oxide-dependent smooth muscle disorders, such as erectile dysfunction. We demonstrate the competitive inhibition of the mitochondrial human type II arginase by N(omega)-hydroxy-L-arginine, the intermediate in the reaction catalyzed by nitric oxide synthase, and its analogue N(omega)-hydroxy-nor-L-arginine, with K(i) values of 1.6 microM and 51 nM at pH 7.5, respectively. We also demonstrate the inhibition of human type II arginase by the boronic acid-based transition-state analogues 2(S)-amino-6-boronohexanoic acid (ABH) and S-(2-boronoethyl)-L-cysteine (BEC), which are known inhibitors of type I arginase. At pH 7.5, both ABH and BEC are classical, competitive inhibitors of human type II arginase with K(i) values of 0.25 and 0.31 microM, respectively. However, at pH 9.5, ABH and BEC are slow-binding inhibitors of the enzyme with K(i) values of 8.5 and 30 nM, respectively. The findings presented here indicate that the design of arginine analogues with uncharged, tetrahedral functional groups will lead to the development of more potent inhibitors of arginases at physiological pH.  相似文献   

3.
Human type II arginase, which is extrahepatic and mitochondrial in location, catalyzes the hydrolysis of arginine to form ornithine and urea. While type I arginases function in the net production of urea for excretion of excess nitrogen, type II arginases are believed to function primarily in the net production of ornithine, a precursor of polyamines, glutamate, and proline. Type II arginases may also regulate nitric oxide biosynthesis by modulating arginine availability for nitric oxide synthase. Recombinant human type II arginase was expressed in Escherichia coli and purified to apparent homogeneity. The Km of arginine for type II arginase is approximately 4.8 mM at physiological pH. Type II arginase exists primarily as a trimer, although higher order oligomers were observed. Borate is a noncompetitive inhibitor of the enzyme, with a Kis of 0.32 mM and a Kii of 0.3 mM. Ornithine, a product of the reaction catalyzed by arginase and a potent inhibitor of type I arginase, is a poor inhibitor of the type II isozyme. The findings presented here indicate that isozyme-selectivity exists between type I and type II arginases for binding of substrate and products, as well as inhibitors. Therefore, inhibitors with greater isozyme-selectivity for type II arginase may be identified and utilized for the therapeutic treatment of smooth muscle disorders, such as erectile dysfunction.  相似文献   

4.
The effect of proline, isoleucine, leucine, valine, lysine and ornithine under standard physiological conditions, on purified Vigna catjang cotyledon and buffalo liver arginases was studied. The results showed that V. catjang cotyledon arginase is inhibited by proline at a lower concentration than buffalo liver arginase and the inhibition was found to be linear competitive for both enzymes. Buffalo liver arginase was more sensitive to inhibition by branched-chain amino acids than V. catjang cotyledon. Leucine, lysine, ornithine and valine are competitive inhibitors while isoleucine is a mixed type of inhibitor of liver arginase. We have also studied the effect of manganese concentration which acts as a cofactor and leads to activation of arginase. The optimum Mn2 + concentration for Vigna catjang cotyledon arginase is 0.6 mM and liver arginase is 2.0 mM. The preincubation period required for liver arginase is 20 min at 55°C, the preincubation period and temperature required for activation of cotyledon arginase was found to be 8 min at 35°C. The function of cotyledon arginase in polyamine biosynthesis and a possible role of branched chain amino acids in hydrolysis of arginine in liver are discussed.  相似文献   

5.
《Gene》1997,193(2):157-161
A full-length cDNA encoding type II arginase was isolated from a human kidney cDNA library and its sequence compared to those of vertebrate type I arginases as well as to arginases of bacteria, fungi and plants. The predicted sequence of human type II arginase is 58% identical to the sequence of human type I arginase but is 71% identical to the sequence of Xenopus type II arginase, suggesting that duplication of the arginase gene occurred before mammals and amphibians diverged. Seven residues known to be essential for activity were found to be conserved in all arginases. Type II arginase mRNA was detected in virtually all human and mouse RNA samples tested whereas type I arginase mRNA was found only in liver. At least five mRNA species hybridizing to type II arginase cDNA were found in the human RNA samples whereas only a single type II arginase mRNA species was found in the mouse. This raises the possibility that the multiple type II arginase mRNAs in humans arise from differential RNA processing or usage of alternative promoters.  相似文献   

6.
The arginase present in mouse brain and liver was studied in order to determine if the activity in both tissues was due to the same enzyme. Mouse liver contains only one arginase enzyme whereas mouse brain contains two. One of the arginases in the brain is distinct from the liver enzyme as determined by fractionation on DEAE-cellulose, CM-cellulose and disc gel electrophoresis. The second enzyme from brain tissue has the same properties as the liver enzyme when subjected to these same fractionation techniques. However this arginase can be distinguished from the liver enzyme by its Km for arginine heat lability and MnCl2 activation curve. Thus both arginases in brain differ from the liver enzyme. No interconversion of the brain enzymes was detected, and the molecular weight of all the arginases appears to be the same. The observation of multiple distinct brain and liver arginases in mouse brain and liver was confirmed with bovine tissues.  相似文献   

7.
Cadmium ion activates arginase from many species of organisms but is an inhibitor of arginase from many other species. The purpose of this study was to investigate the inhibition of rat liver and kidney arginase by cadmium ion. Rat kidney arginase was inhibited by much lower concentrations of cadmium ion than rat liver arginase. Cadmium ion was a mixed noncompetitive inhibitor of both rat liver and kidney arginase. Cadmium ion enhanced the substrate activation of rat kidney arginase while still inhibiting the enzyme. Cadmium ion prevented the substrate inhibition of rat kidney arginase by fluoride while still inhibiting the enzyme. Cadmium ion also inhibited rat kidney arginase in the presence of manganese ion.  相似文献   

8.
Cadmium ion activates arginase from many species of organisms but is an inhibitor of arginase from many other species. The purpose of this study was to investigate the inhibition of rat liver and kidney arginase by cadmium ion. Rat kidney arginase was inhibited by much lower concentrations of cadmium ion than rat liver arginase. Cadmium ion was a mixed noncompetitive inhibitor of both rat liver and kidney arginase. Cadmium ion enhanced the substrate activation of rat kidney arginase while still inhibiting the enzyme. Cadmium ion prevented the substrate inhibition of rat kidney arginase by fluoride while still inhibiting the enzyme. Cadmium ion also inhibited rat kidney arginase in the presence of manganese ion.  相似文献   

9.
Fluoride is an uncompetitive inhibitor of rat liver arginase. This study has shown that fluoride caused substrate inhibition of rat liver arginase at substrate concentrations above 4 mM. Rat kidney arginase was more sensitive to inhibition by fluoride than liver arginase. For both liver and kidney arginase preincubation with fluoride had no effect on the inhibition. When assayed with various concentrations of L-arginine, rat kidney arginase did not have Michaelis-Menten kinetics. Lineweaver-Burk and Eadie-Hofstee plots were nonlinear. Kidney arginase showed strong substrate activation at concentrations of L-arginine above 4 mM. Within narrow concentrations of L-arginine, the inhibition of kidney arginase by fluoride was uncompetitive. Fluoride caused substrate inhibition of kidney arginase at L-arginine concentrations above 1 mM. The presence of fluoride prevented the substrate activation of rat kidney arginase.  相似文献   

10.
Substitution at the alpha center of the known human arginase inhibitor 2-amino-6-boronohexanoic acid (ABH) is acceptable in the active site pockets of both human arginase I and arginase II. In particular, substituents with a tertiary amine linked via a two carbon chain show improved inhibitory potency for both enzyme isoforms. This potency improvement can be rationalized by X-ray crystallography, which shows a water-mediated contact between the basic nitrogen and the carboxylic acid side chain of Asp200, which is situated at the mouth of the active site pocket of arginase II (Asp181 in arginase I). We believe that this is the first literature report of compounds with improved arginase inhibitory activity, relative to ABH, and represents a promising starting point for further optimization of in vitro potency and the identification of better tool molecules for in vivo investigations of the potential pathophysiological roles of arginases.  相似文献   

11.
 Rat liver arginase contains a dinuclear Mn2(II,II) center in each subunit having EPR properties similar to those observed in Mn-catalases. The principal physiologic role of arginase is catalyzing the hydrolytic cleavage of l-arginine to produce l-ornithine and urea. Here we demonstrate that arginase catalyzes the disproportionation of hydrogen peroxide by a redox mechanism analogous to Mn-catalases, but at rates that are 10–5 to 10–6 of k cat for the Mn-catalases, and also exhibits peroxidase activity. The dinuclear Mn2(II,II) center is essential for maximal catalase activity, since both the H101N and H126N mutant arginases containing only one Mn(II)/subunit have catalase activities that are <3% of that for the wild-type enzyme. Like the Mn-catalases, the catalase activity of arginase is not inhibited by millimolar concentrations of CN, the most potent inhibitor of heme catalases, or by EDTA, a chelator of free metal ions. The catalase activity of arginase is not significantly inhibited by Cl or F, in contrast to Mn-catalases, while potent inhibitors of the hydrolytic activity are also effective inhibitors of the catalase activity. These results suggest that lower affinity of hydrogen peroxide to the active site of arginase contributes to the lower catalase activity. EPR spectroscopy reveals that potent inhibitors of the hydrolytic reaction, including N ω-hydroxy-l-arginine, l-lysine, and l-valine, decouple the electronic interaction between the Mn2+ ions, most probably by removing a μ-bridging ligand or by increasing the intermanganese separation. The capacity for arginase to deliver a hydroxide ion to hydrolyze the l-arginine substrate is suggested to arise from a "dinuclear effect", wherein the two metal ions contribute more or less equivalently in deprotonation of metal-bound water molecule. Structure-reactivity analyses of these reactions will provide insights into the factors that control redox versus hydrolytic function in dimanganese clusters. Received: 18 November 1996 / Accepted: 7 April 1997  相似文献   

12.
Mammals contain two genes encoding distinct isoforms of arginase (arginases I and II), both of which catalyze the conversion of arginine to ornithine and urea. However, their subcellular localization and tissue-specific patterns of expression are very different, indicating that they perform distinct physiologic roles. As an initial step in elucidating the regulation and physiologic roles of arginase II, this report describes the characterization of a mammalian arginase II gene. The murine arginase II gene contains eight exons like the arginase I gene. The six internal exons have intron/exon boundaries that are identical to the arginase I gene; however, exon three of the arginase II gene has obtained a three-base-pair insertion. The identity of the exon/intron boundaries is consistent with a gene duplication as the origin of the arginase isozymes with the small insertion occurring after the duplicative event. The promoter region of the arginase II gene, which bears no resemblance to that of the arginase I genes, contains numerous potential binding sites for enhancer and promoter elements but does not contain a TATA box. Received: 8 May 1998 / Accepted: 9 June 1998  相似文献   

13.
Agrobacterium nopaline Ti plasmids code for three enzymes of nopaline [N2-(1,3-dicarboxypropyl)-L-arginine] degradation: nopaline oxidase, arginase, and ornithine cyclodeaminase. We describe the DNA sequence of the arginase gene, a comparison of the deduced protein sequence with eucaryotic arginases, and properties of the procaryotic enzyme. The results show that the agrobacterial arginase is related with arginases from yeast, rat liver, and human liver (28-33% identity). The Ti plasmid enzyme revealed several properties which appear common to all arginases, but it does not utilize L-canavanine as substrate, and its Mn2+ requirement is not satisfied by Fe2+, Co2+, or Ni2+. The properties of arginase and ornithine cyclodeaminase are discussed as part of the mechanisms which avoid depletion of L-arginine and L-ornithine pools for biosynthetic reactions during catabolic utilization of nopaline.  相似文献   

14.
Biochemical and cytochemical inhibition experiments of rat prostatic acid phosphatase were performed using enzymes separated on isoelectric focusing (IEF) gels, and thin sections of the rat ventral prostate. Various inhibitors, including L (+) tartrate, mercuric ions and sodium fluoride were applied to electrofocused enzymes which were subsequently stained for acid phosphatase activity. Enzymes focused on IEF gels at pH 7.9 and 8.1, respectively, were inhibited with 1.8 x 10-3 M tartrate, while the enzyme activities with isoelectric points (pl) of 5.6 and 7.15, respectively, were only slightly inhibited by this compound. Using 10-3M mercuric ions, enzymes with pl of 5.6 and 7.15 were inhibited while the enzymes with pl of 7.9 and 8.1 were still active. The biochemical procedures were adapted to chopper sections of perfused-fixed ventral prostate of the rat. Preincubation of the sections with 2.4 x 10-3M mercuric chloride blocked the secretory enzyme and most of the lysosomal enzyme and resulted in an artificial staining of the Golgi apparatus and other cytoplasmic organelles. Nuclear precipitates however were prevented. L (+) tartrate could not be used at the ultrastructural level since it developed false positive results by the formation of lead tartrate. The results indicate that no selective inhibition of either secretory or lysosomal acid phosphatase can be achieved at the ultrastructural level using metal salts or tartrate, respectively.  相似文献   

15.
Hyperargininemia is a rare autosomal disorder that results from a deficiency in hepatic type I arginase. This deficiency is the consequence of random point mutations that occur throughout the gene. The G235R patient mutation has been proposed to affect the catalytic activity and structural integrity of the protein [D. E. Ash, L. R. Scolnick, Z. F. Kanyo, J. G. Vockley, S. D. Cederbaum, and D. W. Christianson (1998) Mol. Genet. Metab. 64, 243-249]. The G235R (patient) and G235A (control) arginase mutants of rat liver arginase have been generated to probe the effects of these point mutations on the structure and function of hepatic type I arginase. Both mutant arginases were trimeric by gel filtration, but the control G235A mutant had 56% of wild-type activity and the G235R mutant had less than 0.03% activity compared to the wild-type enzyme. The G235R mutant contained undetectable levels of tightly bound manganese as determined by electron paramagnetic resonance, while the G235A mutant had a Mn(II) stoichiometry of 2 Mn/subunit. Molecular modeling indicates that the introduction of an arginine residue at position 235 results in a major rearrangement of the metal ligands that compromise Mn(II) binding.  相似文献   

16.
Stone EM  Chantranupong L  Georgiou G 《Biochemistry》2010,49(49):10582-10588
The active sites of eukaryotic arginase enzymes are strictly conserved, especially the first- and second-shell ligands that coordinate the two divalent metal cations that generate a hydroxide molecule for nucleophilic attack on the guanidinium carbon of l-arginine and the subsequent production of urea and l-ornithine. Here by using comprehensive pairwise saturation mutagenesis of the first- and second-shell metal ligands in human arginase I, we demonstrate that several metal binding ligands are actually quite tolerant to amino acid substitutions. Of >2800 double mutants of first- and second-shell residues analyzed, we found more than 80 unique amino acid substitutions, of which four were in first-shell residues. Remarkably, certain second-shell mutations could modulate the binding of both the nucleophilic water/hydroxide molecule and substrate or product ligands, resulting in activity greater than that of the wild-type enzyme. The data presented here constitute the first comprehensive saturation mutagenesis analysis of a metallohydrolase active site and reveal that the strict conservation of the second-shell metal binding residues in eukaryotic arginases does not reflect kinetic optimization of the enzyme during the course of evolution.  相似文献   

17.
The urea cycle enzyme arginase (EC 3.5.3.1) hydrolyzes l-arginine to l-ornithine and urea. Mammalian arginases require manganese, have a highly alkaline pH optimum and are resistant to reducing agents. The gastric human pathogen, Helicobacter pylori, also has a complete urea cycle and contains the rocF gene encoding arginase (RocF), which is involved in the pathogenesis of H. pylori infection. Its arginase is specifically involved in acid resistance and inhibits host nitric oxide production. The rocF gene was found to confer arginase activity to Escherichia coli; disruption of plasmid-borne rocF abolished arginase activity. A translationally fused His(6)-RocF was purified from E. coli under nondenaturing conditions and had catalytic activity. Remarkably, the purified enzyme had an acidic pH optimum of 6.1. Both purified arginase and arginase-containing H. pylori extracts exhibited optimal catalytic activity with cobalt as a metal cofactor; manganese and nickel were significantly less efficient in catalyzing the hydrolysis of arginine. Viable H. pylori or E. coli containing rocF had significantly more arginase activity when grown with cobalt in the culture medium than when grown with manganese or no divalent metal. His(6)-RocF arginase activity was inhibited by low concentrations of reducing agents. Antibodies raised to purified His(6)-RocF reacted with both H. pylori and E. coli extracts containing arginase, but not with extracts from rocF mutants of H. pylori or E. coli lacking the rocF gene. The results indicate that H. pylori RocF is necessary and sufficient for arginase activity and has unparalleled features among the arginase superfamily, which may reflect the unique gastric ecological niche of this organism.  相似文献   

18.
The ornithine-urea cycle has been investigated in Fasciola gigantica. Agrinase had very high activity compared to the other enzymes. Carbamoyl phosphate synthetase and ornithine carbamoyltransferase had very low activity. A moderate enzymatic activity was recorded for argininosuccinate synthetase and argininosuccinate lyase. The low levels of F. gigantica urea cycle enzymes except to the arginase suggest the urea cycle is operative but its role is of a minor important. The high level of arginase activity may benefit for the hydrolysis of the exogenous arginine to ornithine and urea. Two arginases Arg I and Arg II were separated by DEAE-Sepharose column. Further purification was restricted to Arg II with highest activity. The molecular weight of Arg II, as determined by gel filtration and SDS-PAGE, was 92,000. The enzyme was capable to hydrolyze l-arginine and to less extent l-canavanine at arginase:canavanase ratio (>10). The enzyme exhibited a maximal activity at pH 9.5 and Km of 6 mM. The optimum temperature of F. gigantica Arg II was 40 degrees C and the enzyme was stable up to 30 degrees C and retained 80% of its activity after incubation at 40 degrees C for 15 min and lost all of its activity at 50 degrees C. The order of effectiveness of amino acids as inhibitors of enzyme was found to be lysine>isoleucine>ornithine>valine>leucine>proline with 67%, 43%, 31%, 25%, 23% and 15% inhibition, respectively. The enzyme was activated with Mn2+, where the other metals Fe2+, Ca2+, Hg2+, Ni2+, Co2+ and Mg2+ had inhibitory effects.  相似文献   

19.
Except for sulfonamides, metal complexing anions represent the second class of inhibitors of the zinc enzyme carbonic anhydrase (CA, EC 4.2.1.1). The first inhibition study of the transmembrane, tumor-associated isozyme CA IX with anions is reported here. Inhibition data of the cytosolic isozymes CA I and CA II with a large number of anionic species such as halides, pseudohalides, bicarbonate, nitrate, hydrosulfide, arsenate, etc., are also provided for comparison. Isozyme IX has an inhibition profile by anions different in some aspects from those of CA I and CA II, that may have interesting physiological consequences.  相似文献   

20.
Recombination of subunits of rat liver arginase A1 and rat kidney arginase A4 yielded a product which in polyacrylamide gel electrophoresis and DEAE-cellulose chromatography separated into five proteins with arginase activity. Proteins I and V corresponded in polyacrylamide gel-electrophoresis, DEAE-cellulose chromatography and immunological properties to the parental forms A1 and A4, respectively. Formation of five arginase hybrids proved the tetrameric structure of native arginases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号