首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Dehydrodipeptide analogs whose scissile carboxamide has been replaced with a PO(OH)CH2 group have been found to be potent inhibitors of the zinc protease dehydrodipeptidase 1 (DHP-1, renal dipeptidase, EC 3.4.13.11). The best of these inhibitors, compound 25 (Ki = 0.52 nM), is two hundred times more potent than cilastatin 2 which is used clinically as a component of the broad-spectrum antibiotic combination Primaxin. Compound 25 is a tight binding inhibitor exhibiting slow binding kinetics with a remarkably slow off rate from DHP-1 (half life greater than 8 hours). The kinetics of its binding are consistent with a simple on-off mechanism whereas the less active D-enantiomer 26 appears to bind in an initial loose complex with the enzyme which slowly rearranges to a tighter complex (Ki = 83 nM).  相似文献   

2.
A new class of reversible cell cycle inhibitors   总被引:5,自引:0,他引:5  
The effects of three compounds on the cell cycle of HL-60 promyeloid leukemia cells has been examined. Ciclopirox olamine, an antifungal agent, and the compound Hoechst 768159 reversibly block the cell cycle at a point occurring roughly 1 h before the arrest mediated by aphidicolin, an inhibitor of DNA polymerase alpha activity, which acts in early S phase. Similar results are also obtained with the compound mimosine, a plant amino acid. Based on these data, it is concluded that all three agents inhibit cell cycle traverse at or very near the G1/S phase boundary and identify a previously undefined reversible cell cycle arrest point.  相似文献   

3.
Entamoeba histolytica is a protozoan parasite which infects approximately 50 million people worldwide, resulting in an estimated 70,000 deaths every year. Since the 1960s E. histolytica infection has been successfully treated with metronidazole. However, drawbacks to metronidazole therapy exist, including adverse effects, a long treatment course, and the need for an additional drug to prevent cyst-mediated transmission. E. histolytica possesses a kinome with approximately 300–400 members, some of which have been previously studied as potential targets for the development of amoebicidal drug candidates. However, while these efforts have uncovered novel potent inhibitors of E. histolytica kinases, none have resulted in approved drugs. In this study we took the alternative approach of testing a set of twelve previously FDA-approved antineoplastic kinase inhibitors against E. histolytica trophozoites in vitro. This resulted in the identification of dasatinib, bosutinib, and ibrutinib as amoebicidal agents at low-micromolar concentrations. Next, we utilized a recently developed computational tool to identify twelve additional drugs with human protein target profiles similar to the three initial hits. Testing of these additional twelve drugs led to the identification of ponatinib, neratinib, and olmutinib were identified as highly potent, with EC50 values in the sub-micromolar range. All of these six drugs were found to kill E. histolytica trophozoites as rapidly as metronidazole. Furthermore, ibrutinib was found to kill the transmissible cyst stage of the model organism E. invadens. Ibrutinib thus possesses both amoebicidal and cysticidal properties, in contrast to all drugs used in the current therapeutic strategy. These findings together reveal antineoplastic kinase inhibitors as a highly promising class of potent drugs against this widespread and devastating disease.  相似文献   

4.
A series of estradiol dimers was synthesized or selected from compounds available in our laboratory and tested for inhibition against steroid sulfatase. Dimers linked by their C17 position, compounds 7 and 8, showed inhibitory potency similar (56% and 54% at 1 μM) to that of our best previously reported reversible inhibitor EM-690 (62% at 1 μM). Docking experiment seems to indicate that C17–C17 dimers bind in a similar way to EM-690 whereas C16–O3 and C16–C16 dimers bind in an upside-down position.  相似文献   

5.
A series of potent inhibitors of tyrosinase and their structure-activity relationships are described. N-Benzylbenzamide derivatives (1-21) with hydroxyl(s) were synthesized and tested for their tyrosinase inhibitory activity. With this series, compound 15 provided a potent tyrosinase inhibition: it effectively inhibited the oxidation of l-DOPA catalyzed by mushroom tyrosinase with an IC(50) of 2.2microM.  相似文献   

6.
The synthesis and the preliminary expansion of this new class of CDK2 inhibitors are presented. The synthesis was accomplished using a solution-phase protocol amenable to rapid parallel expansion and suitable to be scaled-up in view of possible lead development. Following a medicinal chemistry program aimed at improving cell permeability and selectivity, a series of compounds with nanomolar activity in the biochemical assay and able to efficiently inhibit tumor cell proliferation has been obtained.  相似文献   

7.
The iterative process for the discovery of a series of pyrazinone mono-amides as potent, selective and reversible non-peptide caspase-3 inhibitors (e.g., M826 and M867) is reported. These compounds display potent anti apoptotic activities in a number of cell based systems in vitro as well as in several animal models in vivo.  相似文献   

8.
Inhibitors of human transglutaminase 2 (TG2) are anticipated to be useful in the therapy of a variety of diseases including celiac sprue as well as certain CNS disorders and cancers. A class of 3-acylidene-2-oxoindoles was identified as potent reversible inhibitors of human TG2. Structure-activity relationship analysis of a lead compound led to the generation of several potent, competitive inhibitors. Analogs with significant non-competitive character were also identified, suggesting that the compounds bind at one or more allosteric regulatory sites on this multidomain enzyme. The most active compounds had Ki values below 1.0 μM in two different kinetic assays for human TG2, and may therefore be suitable for investigations into the role of TG2 in physiology and disease in animals.  相似文献   

9.
Abstract

Brain butyrylcholinesterase (BChE) is an attractive target for drugs designed for the treatment of Alzheimer’s disease (AD) in its advanced stages. It also potentially represents a biomarker for progression of this disease. Based on the crystal structure of previously described highly potent, reversible, and selective BChE inhibitors, we have developed the fluorescent probes that are selective towards human BChE. The most promising probes also maintain their inhibition of BChE in the low nanomolar range with high selectivity over acetylcholinesterase. Kinetic studies of probes reveal a reversible mixed inhibition mechanism, with binding of these fluorescent probes to both the free and acylated enzyme. Probes show environment-sensitive emission, and additionally, one of them also shows significant enhancement of fluorescence intensity upon binding to the active site of BChE. Finally, the crystal structures of probes in complex with human BChE are reported, which offer an excellent base for further development of this library of compounds.  相似文献   

10.
Starting from the observation that the CbzNH(CH2)2 side chain of the potent MMP-2/MMP-14 inhibitor, benzyl-(3R)-4-(hydroxyamino)-3-[isopropoxy(1,1'-biphenyl-4-yl-sulfonyl)amino]-4-oxobutylcarbamate, (R)-1 lies in a hydrophobic region (S1) exposed to the solvent of the protease active site, we hypothesized that an aminoethylcarboxamido chain structurally related to that of (R)-1 might be an useful tool to bind another linker stretching out from the protein. This would be able to interact either with a enzyme region adjacent to the active site, or with other molecules of matrix metalloproteinases (MMPs), or other proteins of the extracellular matrix (ECM) that may be involved in the enzyme activation. On these basis we describe new dimeric compounds of type 2, twin hydroxamic acids, obtained by the joint of two drug entities of (R)-1 linked in P1 by extendable semirigid linkers. Type 2 compounds are potentially able to undergo more complex inhibitor-enzyme interactions than those occurring with monomeric compounds of type 1, thus influencing positively the potency, selectivity and/or cytotoxicity of the new compounds.  相似文献   

11.
In an effort to identify hepatoselective inhibitors of HMG-CoA reductase, two series of pyrroles were synthesized and evaluated. Efforts were made to modify (3R,5R)-7-[3-(4-fluorophenyl)-1-isopropyl-4-phenyl-5-phenylcarbamoyl-1H-pyrrol-2-yl]-3,5-dihydroxy-heptanoic acid sodium salt 30 in order to reduce its lipophilicity and therefore increase hepatoselectivity. Two strategies that were explored were replacement of the lipophilic 3-phenyl substituent with either a polar function (pyridyl series) or with lower alkyl substituents (lower alkyl series) and attachment of additional polar moieties at the 2-position of the pyrrole ring. One compound was identified to be both highly hepatoselective and active in vivo. We report the discovery, synthesis, and optimization of substituted pyrrole-based hepatoselective ligands as potent inhibitors of HMG-CoA reductase for reducing low density lipoprotein cholesterol (LDL-c) in the treatment of hypercholesterolemia.  相似文献   

12.
A novel class of potent NF-kappaB signaling inhibitors   总被引:1,自引:0,他引:1  
A novel class of NF-kappaB pathway signaling inhibitors was discovered by virtual screening, medicinal chemistry, and QSAR analysis. An initial set of compounds inhibited NF-kappaB signaling in a whole cell reporter gene assay in the micro-molar range. Activity was improved step by step by medicinal chemistry to yield nano-molar signaling inhibitors.  相似文献   

13.
A novel class of potent and selective inhibitors of KDR incorporating an indazole moiety 1 is reported. The discovery, synthesis, and structure–activity relationships of this series of inhibitors have been investigated. The most promising compounds were also profiled to determine their pharmacokinetic properties and evaluated in a VEGF-induced vascular permeability assay.  相似文献   

14.
The oxindolylidene acetic acids having long N-alkyl chains exhibited strong inhibitory activity toward dual specificity phosphatase Cdc25A.  相似文献   

15.
From the authors' 650,000 compound collection, they have selected approximately 15,000 potential small-molecule protease inhibitors, which were subjected to high-throughput screening against caspase-3. The screening yielded a series of hits that belong to 11 different scaffolds. Based on the structure of one of the hits, a new class of the small-molecule inhibitors with a double electrophilic warhead, 8-sulfonyl-pyrrolo[3,4-c]quinoline-1,3-diones (SPQ), was synthesized and tested in follow-up mechanistic and anti-apoptosis assays. Mechanistic analysis of a representative compound of this class, CD-001-0011, showed that the compound exhibited a high potency (IC (50)=130 nM), was reversible though noncompetitive, and had a broad selectivity profile to other caspases belonging to groups I to III. The compound was effective in preventing staurosporine induced apoptosis in a few cell lines and retinoic acid-induced apoptosis in zebrafish.  相似文献   

16.
In this report the structure-activity relationships of a series of novel (N-acyl-N-alkyl)glycyl borolysine thrombin inhibitors are described. This work culminates in the discovery of (N-3-phenylpropanoyl-N-phenethyl)glycyl borolysine (12j), a potent, orally active inhibitor with a binding conformation in which the N-phenethyl group occupies the aryl binding pocket of thrombin.  相似文献   

17.
The synthesis and SAR of a series of 6-(4-(substituted)phenyl)-2-aminopyridines as inhibitors of nitric oxide synthase are described. Compound 3a from this series shows potent and selective inhibition of the human nNOS isoform, with pharmacokinetics sufficient to provide in vivo inhibition of nNOS activity.  相似文献   

18.
6-Methyl-3-phenylcoumarins 3–6 were designed, synthesized and evaluated as monoamine oxidase A and B (MAO-A and MAO-B) inhibitors. The synthesis of these new compounds (resveratrol–coumarin hybrids) was carried out with good yield by a Perkin reaction, from the 5-methylsalicylaldehyde and the corresponding phenylacetic acid. They show high selectivity to the MAO-B isoenzyme, with IC50 values in the nanomolar range. Compound 5 is the most active compound and is several times more potent and selective than the reference compound, R-(?)-deprenyl.  相似文献   

19.
The hexapeptide Z-Tyr(SO-3)-Met-Gly-Trp-Met-Asp-NH2, from the natural sequence of C-terminal cholecystokinin was found to be a competitive antagonist of cholecystokinin receptors, in vitro. In the present study, we report that this peptide inhibits gastrin-induced acid secretion in vivo, (ED50 = 1.5 mumol . kg-1), without agonist activity. Desulfation of the tyrosine residue slightly altered this effect. The tripeptide Boc-Trp-Met-Asp-NH2 showed similar effects, but had lower potency (ED50 = 12 mumol . kg-1). From these preliminary results, it can be concluded that removal of the phenylalanine residue from the C-terminal sequence of CCK or gastrin, leads to an antagonist of the natural hormones and that C-terminal phenylalanine residue is important for agonist activity. As compared with proglumide, a well known gastrin receptor antagonist, these peptides were 20-200 times more potent as inhibitors on the same model.  相似文献   

20.
Histone deacetylase (HDAC) inhibitors that target Class I and Class II HDACs are currently in advanced clinical trials for the treatment of cancer. Vorinostat (Zolinza, SAHA) is a hydroxamic acid approved for the treatment of patients with cutaneous T-cell lymphoma who have progressive, persistent or recurrent disease on or following two systemic therapies. As part of an on-going effort to better understand the nature of the HDAC enzyme/inhibitor interaction and design highly effective HDAC inhibitors, we herein report the design, synthesis and HDAC inhibitory activity of a vorinostat-derived series of substrate-based HDAC inhibitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号