首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 844 毫秒
1.
Several N-thiophosphonyl-glutamates were found to be potent competitive inhibitors of a zinc-dependent glutamyl hydrolase, carboxypeptidase G (CPG). Weak inhibition exhibited by an analogous N-phosphonyl-glutamate suggests that the enhanced potency of the phosphonamidothioates is due to the presence of their sulfur ligand and its favorable interactions with active site features, presumably zinc(II).  相似文献   

2.
To explore for the existence of an auxiliary hydrophobic binding register remote from the active site of PSMA a series of phenylalkylphosphonamidate derivatives of glutamic acid were synthesized and evaluated for their inhibitory potencies against PSMA. Both the phenyl- and benzylphosphonamidates (1a and 1b) exhibited only modest inhibitory potency against. The phenethyl analog 1c was intermediate in inhibitory potency while inhibitors possessing a longer alkyl tether from the phenyl ring, resulted in markedly improved K(i) values. The greatest inhibitory potency was obtained for the inhibitors in which the phenyl ring was extended furthest from the central phosphorus (1f, n=5 and 1g, n=6). The slightly serrated pattern that emerged as the alkyl tether increased from three to six methylene units suggests that inhibitory potency is not simply correlated to increased hydrophobicity imparted by the phenylalkyl chain, but rather that one or more hydrophobic binding registers may exist remote from the substrate recognition architecture in the active site of PSMA.  相似文献   

3.
A series of eight N-2-phenylethylphosphonyl derivatives of glutamic acid was prepared to determine if the inhibitory potency of a phenylethylphosphonyl derivative of glutamic acid against prostate-specific membrane antigen (PSMA) could be improved through rational substitutions on the phenyl ring. The design of these eight analogs was based upon the Topliss batchwise approach. Of the inhibitors from the first generation, the 3,4-dichlorophenyl analog exhibited the greatest improvement over the lead compound which was an unsubstituted phenyl derivative, while the 4-methoxyphenyl analog was essentially void of inhibitory potency against PSMA in single-dose studies. From the potency ranking order of the first generation, the parameter most important to the pharmacophore was determined to be pi + sigma. Attempts to optimize further the potency of inhibitors by preparing a second generation of compounds did not result in structures with greater potency than that of the 3,4-dichlorophenyl analog from the first generation. Based upon K(i) values, the 3,4-dichlorophenyl analog represented a potency improvement of nearly one order of magnitude. These results confirm further the usefulness of the Topliss approach to analog development when large library synthesis cannot be achieved readily.  相似文献   

4.
To identify the pharmacophore of a phosphoramidate peptidomimetic inhibitor of prostate-specific membrane antigen (PSMA), a small analog library was designed and screened for inhibitory potency against PSMA. The design of the lead inhibitor was based upon N-acyl derivatives of endogenous substrate folyl-gamma-Glu and incorporates a phosphoramidate group to interact with the PSMA catalytic zinc atoms. The scope of the analog library was designed to test the importance of various functional groups to the inhibitory potency of the lead phosphoramidate. The IC(50) for the lead phosphoramidate inhibitor was 35 nM while the IC(50) values for the analog library presented a range from 0.86 nM to 4.1 microM. Computational docking, utilizing a recently solved X-ray crystal structure of the recombinant protein, along with enzyme inhibition data, was used to propose a pharmacophore model for the PSMA active site.  相似文献   

5.
Prostate-specific membrane antigen (PSMA) is a type II membrane protein that has attracted significant attention as a target for immunioscintigraphic and radioimmunotherapeutic applications for prostate cancer. However, definitive studies on its substrate and inhibitor specificity as well as protein-protein interactions have been somewhat limited by difficulties in the purification of native PSMA. In this study, we optimized the purification of native PSMA from LNCaP cells using conformational epitope-specific antibody-affinity chromatography. Western blot analysis and an HPLC-based enzymatic activity assay were used to compare the yield and activity of PSMA purified by different methods. The ratio of purified PSMA in a native and active conformation was determined by quantifying the amount of non-native PSMA not retained in a second antibody-affinity isolation. The addition of both a neutralization step and the inclusion of Zn(2+) to the equilibration buffer in desalting step provides considerable enhancement in the yield of active PSMA from LNCaP cells.  相似文献   

6.
Prostate-specific membrane antigen (PSMA), a type II transmembrane protein, has been becoming an active target for imaging and therapeutic applications for prostate cancer. Recently, the development of its various chemical inhibitor scaffolds has been explored to serve as carriers for therapeutic or diagnostic payloads targeted to PSMA-positive tumor cells. However, there have been few efforts to definitively determine the optimal length of linker between PSMA inhibitor cores and their payload molecules with regard to the affinity to PSMA and in vitro performance. In our present model study, three spacer-length varied fluorescent inhibitors (FAM-CTT-54, FAM-X-CTT-54 and FAM-PEG(8)-CTT-54) were synthesized, and further enzymatic inhibition studies displayed linker length-dependent changes in: inhibitory potency (IC(50)=0.41 nM, 0.35 nM, 1.93 nM), modes of binding (reversible, slowly reversible, irreversible), respectively. Furthermore, cell-labeling imaging revealed the spacer length-related change of fluorescence intensity (FAM-X-CTT-54>FAM-PEG(8)-CTT-54>FAM-CTT-54). These results suggest that selection of linkers and their lengths will be important considerations in the development of next-generation prostate tumor-targeted imaging probes and therapeutic agents that specifically home to PSMA on tumor cells.  相似文献   

7.
We identified UIC-94003, a nonpeptidic human immunodeficiency virus (HIV) protease inhibitor (PI), containing 3(R),3a(S),6a(R)-bis-tetrahydrofuranyl urethane (bis-THF) and a sulfonamide isostere, which is extremely potent against a wide spectrum of HIV (50% inhibitory concentration, 0.0003 to 0.0005 microM). UIC-94003 was also potent against multi-PI-resistant HIV-1 strains isolated from patients who had no response to any existing antiviral regimens after having received a variety of antiviral agents (50% inhibitory concentration, 0.0005 to 0.0055 microM). Upon selection of HIV-1 in the presence of UIC-94003, mutants carrying a novel active-site mutation, A28S, in the presence of L10F, M46I, I50V, A71V, and N88D appeared. Modeling analysis revealed that the close contact of UIC-94003 with the main chains of the protease active-site amino acids (Asp29 and Asp30) differed from that of other PIs and may be important for its potency and wide-spectrum activity against a variety of drug-resistant HIV-1 variants. Thus, introduction of inhibitor interactions with the main chains of key amino acids and seeking a unique inhibitor-enzyme contact profile should provide a framework for developing novel PIs for treating patients harboring multi-PI-resistant HIV-1.  相似文献   

8.
Prostate-specific membrane antigen (PSMA), a type II membrane glycoprotein, its high expression is associated with prostate cancer progression, and has been becoming an active target for imaging or therapeutic applications for prostate cancer. On the other hand, streptavidin-biotin system has been successfully employed in pretargeting therapy towards multiple cancers. Herein, we describe the synthesis of bifunctional ligands (biotin-CTT54, biotin-PEG(4)-CTT54, and biotin-PEG(12)-CTT54) possessing two functional motifs separated by a length-varied polyethylene glycol (PEG) spacer: one (CTT54) binds tumor-marker PSMA and the other (biotin) binds streptavidin or avidin. All three compounds exhibited high potencies (IC(50) values: 1.21, 2.53, and 10nM, respectively) and irreversibility; but only biotin-PEG(12)-CTT54 demonstrated specifically labeling PSMA-positive prostate cancer cells in a two-step pretargeting procedure. Additionally, the pre-formulated complex between biotin-PEG(12)-CTT54 and Cy5-streptavidin displayed the improved inhibitory potency (IC(50)=1.86 nM) and irreversibility against PSMA and rapid uptake of streptavidin conjugate into PSMA-positive prostate cancer cells through PSMA-associated internalization. Together, all these results supported a proof-concept that combination of streptavidin and PSMA's biotinylated inhibitor may lead to development of a novel strategy of tumor-targeting imaging or drug delivery towards prostate cancer.  相似文献   

9.
Prostate specific membrane antigen (PSMA) is a 110 kDa type II transmembrane protein that is expressed exclusively by prostate tumor cells and as such is a clear cellular target in the development of a new method for fast and reliable diagnosis of prostate cancer. PSMA is highly homologous to the neuropeptidase NAALADase, and it has been shown that inhibitors of NAALADase also strongly bind to PSMA. In an effort to better understand the structural basis of the inhibitory activity of more than 60NAALADase inhibitors synthesized and tested by our group, we used Monte Carlo calculations employing the Merck Molecular Force Field to explore the conformational space available to a set of PSMA inhibitors. Conformational analysis indicated that the lower the number of unique conformations accessible by an inhibitor, the greater the biological activity displayed by the compound against LnCAP cells. This suggests that the difference in activity is largely entropy based. The key conformations associated with high activity are used to develop a simple pharmacophore model that led to the design of new, conformationally restricted analogues with potentially high activity in rational drug design.  相似文献   

10.
BackgroundProstate-specific membrane antigen (PSMA) has been found in tumor neovasculature endothelial cells (NECs) of non-prostate cancers and may become the most promising target for anti-tumor therapy. To study the value of PSMA as a potential new target for lung cancer treatment, PSMA expression in non-small cell lung cancer (NSCLC) and small cell lung cancer (SCLC) tissues and its relationship with clinicopathology were investigated in the current study.MethodsImmunohistochemistry was used to detect PSMA expression in a total of 150 lung specimens of patients with lung cancer. The data were analyzed using univariate and multivariate statistical analyses.ResultsThe percentages of NSCLC patients who had PSMA (+) tumor cells and PSMA (+) NECs were 54.02% and 85.06%, respectively. The percentage of patients younger than 60 years old who had PSMA (+) tumor cells was 69.05%, which was significantly greater than the percentage of patients aged 60 years or older (40.00%, p<0.05). A significant difference was observed in the percentage of NSCLC patients with PMSA (+) NECs and stage I or II cancer (92.98%) and those patients with stage III or IV cancer (76.77%). In the SCLC tissues, NEC PSMA expression (70.00%) did not differ significantly from NSCLC. SCLC tumor cells and normal lung tissues cells were all negative. There was no significant correlation between the presence of PSMA (+) NECs in SCLC patients and the observed clinicopathological parameters.ConclusionsPSMA is expressed not only in NECs of NSCLC and SCLC but also in tumor cells of most NSCLC patients. The presence of PSMA (+) tumor cells and PSMA (+) NECs in NSCLC was negatively correlated with age and the clinicopathological stage of the patients, respectively.  相似文献   

11.
The oxytocinase subfamily of M1 aminopeptidases consists of three members, ERAP1, ERAP2 and IRAP that play several important biological roles, including key functions in the generation of antigenic peptides that drive human immune responses. They represent emerging targets for pharmacological manipulation of the immune system, albeit lack of selective inhibitors is hampering these efforts. Most of the previously explored small-molecule binders target the active site of the enzymes via strong interactions with the catalytic zinc(II) atom and, while achieving increased potency, they suffer in selectivity. Continuing our earlier efforts on weaker zinc(II) binding groups (ZBG), like the 3,4-diaminobenzoic acid derivatives (DABA), we herein synthesized and biochemically evaluated analogues of nine potentially weak ZBGs, based on differential substitutions of functionalized pyridinone- and pyridinethione-scaffolds, nicotinic-, isonicotinic-, aminobenzoic- and hydrazinobenzoic-acids. Crystallographic analysis of two analogues in complex with a metalloprotease (MMP-12) revealed unexpected binding topologies, consistent with the observed affinities. Our results suggest that the potency of the compounds as inhibitors of ERAP1, ERAP2 and IRAP is primarily driven by the occupation of active-site specificity pockets and their proper orientation within the enzymes.  相似文献   

12.
Paula S  Tabet MR  Ball WJ 《Biochemistry》2005,44(2):498-510
Sodium/potassium-ATPase (Na/K-ATPase) is a transmembrane enzyme that utilizes energy gained from ATP hydrolysis to transport sodium and potassium ions across cell membranes in opposite directions against their chemical and electrical gradients. Its transport activity is effectively inhibited by cardiac glycosides, which bind to the extracellular side of the enzyme and are of significant therapeutic value in the treatment of congestive heart failure. To determine the extent to which high-affinity binding of cardiac glycosides correlates with their potency in inhibiting pump activity, we determined experimentally both the binding affinities and inhibitory potencies of a series of 37 cardiac glycosides using radioligand binding and ATPase activity assays. The observed variations in key structural elements of these compounds correlating with binding and inhibition were analyzed by comparative molecular similarity index analysis (CoMSIA), which allowed a molecular level characterization and comparison of drug-Na/K-ATPase interactions that are important for ligand binding and activity inhibition. In agreement with our earlier comparative molecular field analysis studies [Farr, C. D., et al. (2002) Biochemistry 41, 1137-1148], the CoMSIA models predicted favorable inhibitor interactions primarily at the alpha-sugar and lactone ring moieties of the cardiac glycosides. Unfavorable interactions were located about the gamma-sugar group and at several positions about the steroid ring system. Whereas for most compounds a correlation between binding affinity and inhibitory potency was found, some notable exceptions were identified. Substitution of the five-membered lactone of cardenolides with the six-membered lactone of bufadienolides caused binding affinity to decline but inhibitory potency to increase. Furthermore, while the removal of ouabain's rhamnose moiety had little effect on inhibitory potency, it caused a dramatic decline in ligand binding affinity.  相似文献   

13.
1,2,3,4-Tetrahydrobenz[h]isoquinoline (THBQ, 11) is a potent, inhibitor of phenylethanolamine N-methyltransferase (PNMT). Docking studies indicated that the enhanced PNMT inhibitory potency of 11 (hPNMT K(i)=0.49microM) versus 1,2,3,4-tetrahydroisoquinoline (5, hPNMT K(i)=5.8microM) was likely due to hydrophobic interactions with Val53, Met258, Val272, and Val269 in the PNMT active site. These studies also suggested that the addition of substituents to the 7-position of 11 that are capable of forming hydrogen bonds to the enzyme could lead to compounds (14-18) having enhanced PNMT inhibitory potency. However, these compounds are in fact less potent at PNMT than 11. Furthermore, 7-bromo-THBQ (19, hPNMT K(i)=0.22mM), which has a lipophilic 7-substituent that cannot hydrogen bond to the enzyme, is twice as potent at PNMT than 11. This once again illustrates the limitations of docking studies for lead optimization.  相似文献   

14.
Prostate-specific membrane antigen (PSMA) is a membrane-bound cell surface peptidase which is over-expressed in prostate cancer cells. The enzymatic activities of PSMA are understood but the role of the enzyme in prostate cancer remains conjectural. We previously confirmed the existence of a hydrophobic binding site remote from the enzyme's catalytic center. To explore the specificity and accommodation of this binding site, we prepared a series of six glutamate-containing phosphoramidate derivatives of various hydroxysteroids (1a-1f). The inhibitory potencies of the individual compounds of the series were comparable to a simple phenylalkyl analog (8), and in all cases IC50 values were sub-micromolar. Molecular docking was used to develop a binding model for these inhibitors and to understand their relative inhibitory potencies against PSMA.  相似文献   

15.
Several potent prostate specific membrane antigen (PSMA) inhibitors have been described recently. We generated a PSMA-specific 2-5A ligand called RBI 1033 by linking 2-5A to the N-acetylaspartylglutamate (NAAG)-based inhibitor ZJ-24. We measured the inhibitory activity of RBI 1033 to the folate hydrolase activity of PSMA. Amazingly, we found that compared to ZJ-24 (IC50 = 53.9 nM), RBI 1033 was more than 10 times more potent (IC50 = 4.78 nM) as a folate hydrolase inhibitor, while SMCC 2-5A lacking the ZJ-24 part, did not show much activity (IC50 = 1974 nM). Also, RBI 1033's affinity to PSMA was found to be 10 times higher than ZJ-24 itself.  相似文献   

16.
Glycosaminoglycans (GAGs) play an important role in inflammatory responses due to their ability to interact with cytokines and chemokines, resulting in the localization of these mediators to specific anatomical sites, where they function to direct leukocyte recruitment and activation. Targeting GAG-cytokine/chemokine interactions might may thus have therapeutic applications as anti-inflammatory or immunomodulatory therapy in vivo. Peptides that mimic the heparin-binding domains of cytokines may have a potential use as inhibitors of GAG-cytokine interactions. A linear octapeptide (MC-2) derived from the conserved heparin-binding region of interferon-gamma (IFN-gamma) was synthesized along with four analogs featuring a substitution of Phe for Leu in position 1 and varying number of positive charges on the octapeptide molecule. The relative abilities of the synthesized peptides to inhibit the interactions between IFN-gamma and GAGs were compared. From the results, it follows that the inhibitory potency of the octapeptide analogs was related to the number of positive charges in the molecule, while increased hydrophobicity had no significant effect.  相似文献   

17.
Pant K  Crane BR 《Biochemistry》2006,45(8):2537-2544
The crystal structures of nitrosyl-heme complexes of a prokaryotic nitric oxide synthase (NOS) from Bacillus subtilis (bsNOS) reveal changes in active-site hydrogen bonding in the presence of the intermediate N(omega)-hydroxy-l-arginine (NOHA) compared to the substrate l-arginine (l-Arg). Correlating with a Val-to-Ile residue substitution in the bsNOS heme pocket, the Fe(II)-NO complex with both l-Arg and NOHA is more bent than the Fe(II)-NO, l-Arg complex of mammalian eNOS [Li, H., Raman, C. S., Martasek, P., Masters, B. S. S., and Poulos, T. L. (2001) Biochemistry 40, 5399-5406]. Structures of the Fe(III)-NO complex with NOHA show a nearly linear nitrosyl group, and in one subunit, partial nitrosation of bound NOHA. In the Fe(II)-NO complexes, the protonated NOHA N(omega) atom forms a short hydrogen bond with the heme-coordinated NO nitrogen, but active-site water molecules are out of hydrogen bonding range with the distal NO oxygen. In contrast, the l-Arg guanidinium interacts more weakly and equally with both NO atoms, and an active-site water molecule hydrogen bonds to the distal NO oxygen. This difference in hydrogen bonding to the nitrosyl group by the two substrates indicates that interactions provided by NOHA may preferentially stabilize an electrophilic peroxo-heme intermediate in the second step of NOS catalysis.  相似文献   

18.
The gene for proteasome subunit alpha type-7 (PSMA7) is located in chromosomal 20q13.33, a region frequently amplified in tumor. In this study, we employed A549 human lung adenocarcinoma cells and showed that PSMA7 inhibits the proliferation, tumorigenicity and invasion of A549 cells in vitro. Moreover, both gain and loss of function studies demonstrated that PSMA7 modulates the tumorigenicity of A549 cells in a xenograft nude mice model. In conclusion, these results identify inhibitory effects associated with PSMA7 that affect the tumorigenicity of A549 cells, suggesting PSMA7 as a potential tumor biomarker.  相似文献   

19.
Inhibitors of carbonic anhydrase were tested for their effects on Photosystem II (PS II) activity in chloroplasts. We find that formate inhibition of PS II turnover rates increases as the pH of the reaction medium is lowered. Bicarbonate ions can inhibit PS II turnover rates. The relative potency of the anionic inhibitors N3?, I?, OAc?, and Cl? is the same for both carbonic anhydrase and PS II. The inhibitory effect of acetazolamide on PS II increases as light intensity decreases, indicating a lowering of quantum yields in the presence of the inhibitor. Imidazole inhibition of PS II increases with pH in a manner suggesting that the unprotonated form of the compound is inhibitory. Formate, bicarbonate, acetazolamide, and imidazole all inhibit DCMU-insensitive, silicomolybdate-supported oxygen evolution, indicating that the site(s) of action of the inhibitors is at, or before, the primary stable PS II electron acceptor Q. This inhibitory effect of low levels of HCO3? along with the known enhancement by HCO3? of quinone-mediated electron flow suggests an antagonistic control effect on PS II photochemistry. We conclude that the responses of PS II to anions (formate, bicarbonate), acetazolamide, and imidazole are analogous to the responses shown by carbonic anhydrase. These findings suggest that the enzyme carbonic anhydrase may provide a model system to gain insight into the “bicarbonate-effect” associated with PS II in chloroplasts.  相似文献   

20.
Prostate-specific membrane antigen (PSMA) remains an active target for imaging and therapeutic applications for prostate cancer. Although radionuclide-based imaging is generally more sensitive and also has been deeply explored, near-infrared fluorescence imaging agents are simple to prepare and compatible with long-term storage conditions. In the present study, a near-infrared fluorescent imaging probe (Cy5.5-CTT-54.2) has been developed by chemical conjugation of Cy5.5N-hydroxysuccinimide ester (Cy5.5-NHS) with a potent PSMA inhibitor CTT-54.2 (IC(50)=144 nM). The probe displays a highly potency (IC(50)=0.55 nM) against PSMA and has demonstrated successful application for specifically labeling PSMA-positive prostate cancer cells in both two and three-dimensional cell culture conditions. These results suggest that the potent, near-infrared Cy5.5-PSMA inhibitor conjugate may be useful for the detection of prostate tumor cells by optical in vivo imaging.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号