首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Microinjection of fluorophore-tagged cytoskeletal proteins has been a useful tool in studies of formation of focal adhesions (FA). We used this method to study the maintenance of adherens junctions (AJ) and tight junctions (TJ) of epithelial Madin-Darby bovine kidney cells. We chose alpha-actinin and vinculin as markers, because they are present both at adherens junctions and focal adhesions and their binding partners have been well characterized. Isolated FITC-labelled chicken alpha-actinin and vinculin were injected into confluent cells where they were rapidly incorporated both in FAs and AJs. The FAs remained unchanged, whereas cell-cell contacts began to fade within an hour after injection and the cells were joined to polykaryons having 5 to 13 nuclei. Short fragments of cell membranes containing injected proteins, actin, beta-catenin, cadherin, claudin, occludin and ZO-1 were visible inside the polykaryons indicating that both AJs and TJs were disintegrated as a single complex. Microinjected FITC-labelled vinculin head domain was also incorporated to both AJs and FAs, but instead of fusions it rapidly induced the detachment of the cells from the substratum probably due to high affinity of vinculin head to talin. Vinculin tail domain had no apparent effect on the cell morphology. Since small GTPases are involved in the building up of AJs, we injected active and inactive forms of cdc42 and rac proteins together with vinculin to see their effect. Active forms reduced the formation of polykaryons presumably by strengthening AJs, whereas inactive forms had no apparent effect. We suggest that excess alpha-actinin and vinculin uncouple the cell-cell adhesion junctions from the intracellular cytoskeleton which leads to fragmentation of junctional complexes and subsequent cell fusion. The results show that cell-cell adhesion sites are more dynamic and more sensitive than FAs to an imbalance in the amount of free alpha-actinin and intact vinculin.  相似文献   

2.
Engagement of integrin receptors with the extracellular matrix induces the formation of focal adhesions (FAs). Dynamic regulation of FAs is necessary for cells to polarize and migrate. Key interactions between FA scaffolding and signaling proteins are dependent on tyrosine phosphorylation. However, the precise role of tyrosine phosphorylation in FA development and maturation is poorly defined. Here, we show that phosphorylation of type Igamma phosphatidylinositol phosphate kinase (PIPKIgamma661) on tyrosine 644 (Y644) is critical for its interaction with talin, and consequently, localization to FAs. PIPKIgamma661 is specifically phosphorylated on Y644 by Src. Phosphorylation is regulated by focal adhesion kinase, which enhances the association between PIPKIgamma661 and Src. The phosphorylation of Y644 results in an approximately 15-fold increase in binding affinity to the talin head domain and blocks beta-integrin binding to talin. This defines a novel phosphotyrosine-binding site on the talin F3 domain and a "molecular switch" for talin binding between PIPKIgamma661 and beta-integrin that may regulate dynamic FA turnover.  相似文献   

3.
Cell-substrate contacts, called focal adhesions (FAs), are dynamic in rapidly moving cells. We show that supervillin (SV)--a peripheral membrane protein that binds myosin II and F-actin in such cells--negatively regulates stress fibers, FAs, and cell-substrate adhesion. The major FA regulatory sequence within SV (SV342-571) binds to the LIM domains of two proteins in the zyxin family, thyroid receptor-interacting protein 6 (TRIP6) and lipoma-preferred partner (LPP), but not to zyxin itself. SV and TRIP6 colocalize within large FAs, where TRIP6 may help recruit SV. RNAi-mediated decreases in either protein increase cell adhesion to fibronectin. TRIP6 partially rescues SV effects on stress fibers and FAs, apparently by mislocating SV away from FAs. Thus, SV interactions with TRIP6 at FAs promote loss of FA structure and function. SV and TRIP6 binding partners suggest several specific mechanisms through which the SV-TRIP6 interaction may regulate FA maturation and/or disassembly.  相似文献   

4.
The synthetic peptide Gly-Arg-Gly-Asp-Ser (GRGDS) mimics the cellular binding site of many adhesive proteins in the extracellular matrix and causes rounding and detachment of spread cells. We have studied whether its binding affects the associations of two major components, alpha-actinin and vinculin, at the adhesion plaque. Living 3T3 cells were microinjected with fluorescently labeled alpha-actinin and/or vinculin and observed using video microscopy before and after the addition of 50 micrograms/ml GRGDS. As soon as 5 min after treatment, fluorescent alpha-actinin and vinculin became dissociated simultaneously from the sites of many focal contacts. The proteins either moved away as discrete structures or dispersed from adhesion plaques. As a result, the enrichment of alpha-actinin and vinculin at these focal contacts was no longer detected. The focal contacts then faded away slowly without showing detectable movement. These data suggest that the binding state of integrin has a transmembrane effect on the distribution of cytoskeletal components. The dissociation of alpha-actinin and vinculin from adhesion plaques may in turn weaken the contacts and result in rounding and detachment of cells.  相似文献   

5.
Membrane-bound integrin receptors are linked to intracellular signaling pathways through focal adhesion kinase (FAK). FAK tends to colocalize with integrin receptors at focal adhesions through its C-terminal focal adhesion targeting (FAT) domain. Through recruitment and binding of intracellular proteins, FAs transduce signals between the intracellular and extracellular regions that regulate a variety of cellular processes including cell migration, proliferation, apoptosis and detachment from the ECM. The mechanism of signaling through the cell is of interest, especially the transmission of mechanical forces and subsequent transduction into biological signals. One hypothesis relates mechanotransduction to conformational changes in intracellular proteins in the force transmission pathway, connecting the extracellular matrix with the cytoskeleton through FAs. To assess this hypothesis, we performed steered molecular dynamics simulations to mechanically unfold FAT and monitor how force-induced changes in the molecular conformation of FAT affect its binding to paxillin.  相似文献   

6.
The ILK, PINCH, Parvin (IPP) complex regulates adhesion and migration via binding of ILK to β1 integrin and α?parvin thus linking focal adhesions to actin cytoskeleton. ILK also binds the adaptor protein PINCH which connects signaling proteins including Rsu1 to the complex. A recent study of Rsu1 and PINCH1 in non-transformed MCF10A human mammary epithelial cells revealed that the siRNA-mediated depletion of either Rsu1 or PINCH1 decreased the number of focal adhesions (FAs) and altered the distribution and localization of FA proteins. This correlated with reduced adhesion, failure to spread or migrate in response to EGF and a loss of actin stress fibers and caveolae. The depletion of Rsu1 caused significant reduction in PINCH1 implying that Rsu1 may function in part by regulating levels of PINCH1. However, Rsu1, but not PINCH1, was required for EGF-induced activation of p38 Map kinase and ATF2 phosphorylation, suggesting a Rsu1 function independent from the IPP complex. Reconstitution of Rsu1-depleted cells with a Rsu1 mutant (N92D) that does not bind to PINCH1 failed to restore FAs or migration but did promote IPP-independent spreading and constitutive as well as EGF-induced p38 activation. In this commentary we discuss p38 activity in adhesion and how Rsu1 expression may be linked to Map kinase kinase (MKK) activation and detachment-induced stress kinase signaling.  相似文献   

7.
Both tyrosine-phosphorylated caveolin-1 (pY14Cav1) and GlcNAc-transferase V (Mgat5) are linked with focal adhesions (FAs); however, their function in this context is unknown. Here, we show that galectin-3 binding to Mgat5-modified N-glycans functions together with pY14Cav1 to stabilize focal adhesion kinase (FAK) within FAs, and thereby promotes FA disassembly and turnover. Expression of the Mgat5/galectin lattice alone induces FAs and cell spreading. However, FAK stabilization in FAs also requires expression of pY14Cav1. In cells lacking the Mgat5/galectin lattice, pY14Cav1 is not sufficient to promote FAK stabilization, FA disassembly, and turnover. In human MDA-435 cancer cells, Cav1 expression, but not mutant Y14FCav1, stabilizes FAK exchange and stimulates de novo FA formation in protrusive cellular regions. Thus, transmembrane crosstalk between the galectin lattice and pY14Cav1 promotes FA turnover by stabilizing FAK within FAs defining previously unknown, interdependent roles for galectin-3 and pY14Cav1 in tumor cell migration.  相似文献   

8.
Noninvasive, straightforward methods to inactivate selected proteins in living cells with high spatiotemporal resolution are needed. Chromophore-assisted laser inactivation (CALI) can be used to photochemically inactivate proteins, but it has several drawbacks, such as procedural complexity and nonspecific photodamage. Here we show that by application of multiphoton excitation to CALI, enhanced green fluorescent protein (EGFP) is an effective chromophore for inactivation of a protein's function without nonspecific photodamage in living mammalian cells.  相似文献   

9.
Src kinase is a crucial mediator of adhesion-related signaling and motility. Src binds to focal adhesion kinase (FAK) through its SH2 domain and subsequently activates it for phosphorylation of downstream substrates. In addition to this binding function, data suggested that the SH2 domain might also perform an important role in targeting Src to focal adhesions (FAs) to enable further substrate phosphorylations. To examine this, we engineered an R175L mutation in cSrc to prevent the interaction with FAK pY397. This constitutively open Src kinase mediated up-regulated substrate phosphorylation in SYF cells but was unable to promote malignant transformation. Significantly, SrcR175L cells also had a profound motility defect and an impaired FA generation capacity. Importantly, we were able to recapitulate wild-type motile behavior and FA formation by directing the kinase to FAs, clearly implicating the SH2 domain in recruitment to FAK and indicating that this targeting capacity, and not simply Src-FAK scaffolding, was critical for normal Src function.  相似文献   

10.
Chromophore assisted laser inactivation (CALI) is a new technique that selectively inactivates proteins of interest to elucidate their in vivo functions. This method has application to a wide array of biological questions. An understanding of aspects of the mechanism of CALI is required for its judicious application. A critical concern for CALI is its spatial specificity because nonspecific inactivation of neighboring unbound proteins by CALI is a possibility. We show here that CALI is very dependent on the distance between the chromophore and the protein such that there is no significant effect beyond 60 A. CALI using antibodies can inactivate other proteins through a complex but its efficacy decreases approximately fourfold for each intervening protein. These data imply that CALI is spatially specific and damage to neighboring proteins is unlikely.  相似文献   

11.
The focal adhesion kinase (FAK) and the proline‐rich tyrosine kinase 2‐beta (PYK2) are implicated in cancer progression and metastasis and represent promising biomarkers and targets for cancer therapy. FAK and PYK2 are recruited to focal adhesions (FAs) via interactions between their FA targeting (FAT) domains and conserved segments (LD motifs) on the proteins Paxillin, Leupaxin, and Hic‐5. A promising new approach for the inhibition of FAK and PYK2 targets interactions of the FAK domains with proteins that promote localization at FAs. Advances toward this goal include the development of surface plasmon resonance, heteronuclear single quantum coherence nuclear magnetic resonance (HSQC‐NMR) and fluorescence polarization assays for the identification of fragments or compounds interfering with the FAK‐Paxillin interaction. We have recently validated this strategy, showing that Paxillin mimicking polypeptides with 2 to 3 LD motifs displace FAK from FAs and block kinase‐dependent and independent functions of FAK, including downstream integrin signaling and FA localization of the protein p130Cas. In the present work we study by all‐atom molecular dynamics simulations the recognition of peptides with the Paxillin and Leupaxin LD motifs by the FAK‐FAT and PYK2‐FAT domains. Our simulations and free‐energy analysis interpret experimental data on binding of Paxillin and Leupaxin LD motifs at FAK‐FAT and PYK2‐FAT binding sites, and assess the roles of consensus LD regions and flanking residues. Our results can assist in the design of effective inhibitory peptides of the FAK‐FAT: Paxillin and PYK2‐FAT:Leupaxin complexes and the construction of pharmacophore models for the discovery of potential small‐molecule inhibitors of the FAK‐FAT and PYK2‐FAT focal adhesion based functions.  相似文献   

12.
Role of vinculin in regulating focal adhesion turnover   总被引:6,自引:0,他引:6  
Although vinculin (-/-) mouse embryo fibroblasts assemble focal adhesions (FAs), they spread more slowly, less extensively, and close a wound more rapidly than vinculin (+/+) cells. To investigate the structure and dynamics of FAs in these cells, we used real-time interference reflection microscopy (IRM) thus avoiding the need to express exogenous GFP-tagged FA proteins which may be misregulated. This showed that the FAs were smaller, less abundant and turned over more rapidly in vinculin null compared to wild-type cells. Expression of vinculin rescued the spreading defect and resulted in larger and more stable FAs. Phosphatidylinositol 4,5-bisphosphate (PIP2) is thought to play a role in vinculin activation by relieving an intramolecular association between the vinculin head (Vh) and tail (Vt) that masks the ligand binding sites in Vh and Vt. To investigate the role of the vinculin/PIP2 interaction in FA dynamics, we used a vinculin mutant lacking the C-terminal arm (residues 1053-1066) and referred to as the deltaC mutation. This mutation reduced PIP2 binding to a Vt deltaC polypeptide by >90% compared to wild type without affecting binding to Vh or F-actin. Interestingly, cells expressing the vinculin deltaC mutant assembled remarkably stable FAs. The results suggest that vinculin inhibits cell migration by stabilising FAs, and that binding of inositol phospholipids to Vt plays an important role in FA turnover.  相似文献   

13.
Cellular FAs (focal adhesions) respond to internal and external mechanical stresses which make them prime candidates for mechanotransduction. Recent observations showed that the FA proteins including vinculin, FAK (FA kinase) and p130Cas are crucial for the ability of cells to transmit forces and to generate cytoskeletal tension. When mechanically stimulated, cells respond by modulating the spreading area, remodel the actin cytoskeleton, activate actomyosin interactions, recruit integrins and reinforce FAs and cytoskeletal structures. These complex cellular responses are orchestrated such that mechanical stresses within the FA complex remained within a narrow range.  相似文献   

14.
The ILK, PINCH, Parvin (IPP) complex regulates adhesion and migration via binding of ILK to β1 integrin and α−parvin thus linking focal adhesions to actin cytoskeleton. ILK also binds the adaptor protein PINCH which connects signaling proteins including Rsu1 to the complex. A recent study of Rsu1 and PINCH1 in non-transformed MCF10A human mammary epithelial cells revealed that the siRNA-mediated depletion of either Rsu1 or PINCH1 decreased the number of focal adhesions (FAs) and altered the distribution and localization of FA proteins. This correlated with reduced adhesion, failure to spread or migrate in response to EGF and a loss of actin stress fibers and caveolae. The depletion of Rsu1 caused significant reduction in PINCH1 implying that Rsu1 may function in part by regulating levels of PINCH1. However, Rsu1, but not PINCH1, was required for EGF-induced activation of p38 Map kinase and ATF2 phosphorylation, suggesting a Rsu1 function independent from the IPP complex. Reconstitution of Rsu1-depleted cells with a Rsu1 mutant (N92D) that does not bind to PINCH1 failed to restore FAs or migration but did promote IPP-independent spreading and constitutive as well as EGF-induced p38 activation. In this commentary we discuss p38 activity in adhesion and how Rsu1 expression may be linked to Map kinase kinase (MKK) activation and detachment-induced stress kinase signaling.  相似文献   

15.
Tumor cell migration is supported in part by the cyclic formation and disassembly of focal adhesions (FAs); however, the mechanisms that regulate this process are not fully defined. The large guanosine 5'-triphosphatase dynamin (Dyn) plays an important role in FA dynamics and is activated by tyrosine phosphorylation. Using a novel antibody specific to phospho-dynamin (pDyn-Tyr-231), we found that Dyn2 is phosphorylated at FAs by Src kinase and is recruited to FAs by a direct interaction with the 4.1/ezrin/radizin/moesin domain of focal adhesion kinase (FAK), which functions as an adaptor between Src and Dyn2 to facilitate Dyn2 phosphorylation. This Src-FAK-Dyn2 trimeric complex is essential for FA turnover, as mutants disrupting the formation of this complex inhibit FA disassembly. Importantly, phosphoactivated Dyn2 promotes FA turnover by mediating the endocytosis of integrins in a clathrin-dependent manner. This study defines a novel mechanism of how Dyn2 functions as a downstream effector of FAK-Src signaling in turning over FAs.  相似文献   

16.
Regulation of endothelial cell (EC) permeability by bioactive molecules is associated with specific patterns of cytoskeletal and cell contact remodeling. A role for mechanical factors such as shear stress (SS) and cyclic stretch (CS) in cytoskeletal rearrangements and regulation of EC permeability becomes increasingly recognized. This paper examined redistribution of focal adhesion (FA) proteins, site-specific focal adhesion kinase (FAK) phosphorylation, small GTPase activation and barrier regulation in human pulmonary EC exposed to laminar shear stress (15 dyn/cm2) or cyclic stretch (18% elongation) in vitro. SS caused peripheral accumulation of FAs, whereas CS induced randomly distributed FAs attached to the ends of newly formed stress fibers. SS activated small GTPase Rac without effects on Rho, whereas 18% CS activated without effect on Rac. SS increased transendothelial electrical resistance (TER) in EC monolayers, which was further elevated by barrier-protective phospholipid sphingosine 1-phosphate. Finally, SS induced FAK phosphorylation at Y576, whereas CS induced FAK phosphorylation at Y397 and Y576. These results demonstrate for the first time differential effects of SS and CS on Rho and Rac activation, FA redistribution, site-specific FAK phosphorylation, and link them with SS-mediated barrier enhancement. Thus, our results suggest common signaling and cytoskeletal mechanisms shared by mechanical and chemical factors involved in EC barrier regulation.  相似文献   

17.
Members of the Src family of tyrosine kinases function to phosphorylate focal adhesion (FA) proteins. To explore the overlapping functions of Src kinases, we have targeted Csk, a negative regulator of the Src family, to FA structures. Expression of FA-targeted Csk (FA-Csk) effectively reduced the active form (nonphosphorylated at the C-terminal regulatory tyrosine) of Src members in the cell. We found that fibroblasts expressing FA-Csk lost integrin-mediated adhesion. Activated Src (SrcY529F) as well as activation of putative Src signaling mediators (Fak, Cas, Crk/CrkL, C3G, and Rap1) blocked the effect of FA-Csk in a manner dependent on Rap1. SrcY529F also inhibited activated Ras-induced cell detachment but failed to rescue detachment caused by an activated mutant of Raf1 (Raf-BXB) that Rap1 cannot inhibit. Although normal spreading onto fibronectin was restored by the beta(1) integrin affinity-activating antibody TS2/16 in cells expressing FA-Csk or Raf-BXB, FAs were lost in these cells. On the other hand, Rap1 activation could restore FAs in cells expressing FA-Csk. Activation of the executioner caspase, caspase 3, is essential for many forms of apoptosis. While a caspase 3 inhibitor (Z-DEVD-FMK) inhibited cell detachment triggered by activation of caspase 8, this inhibitor had no effect on cell detachment caused by FA-Csk. Likewise, overexpression of an activated Akt made cells resistant to the effect of caspase 8 activation, but not to the effect of FA-Csk. It is therefore likely that the primary cause of cell rounding and detachment induced by FA-Csk involves dysfunction of FAs rather than caspase-mediated apoptosis that may result from possible loss of survival signals mediated by Src family kinases. We suggest that endogenous Src family kinases are essential for FAs through activation of Rap1 in fibroblasts.  相似文献   

18.
Cell migration is a dynamic process that requires the coordinated formation and disassembly of focal adhesions (FAs). Several proteins such as paxillin, focal adhesion kinase (FAK), and G protein-coupled receptor kinase-interacting protein 1 (GIT1) are known to play a regulatory role in FA disassembly and turnover. However, the mechanisms by which this occurs remain to be elucidated. Paxillin has been shown to bind the C-terminal domain of FAK in FAs, and an increasing number of studies have linked paxillin association with GIT1 during focal adhesion disassembly. It has been reported recently that phosphorylation of serine 273 in the LD4 motif of paxillin leads to an increased association with Git1 and focal adhesion turnover. In the present study, we examined the effects of phosphorylation of the LD4 peptide on its binding affinity to the C-terminal domain of FAK. We show that phosphorylation of LD4 results in a reduction of binding affinity to FAK. This reduction in binding affinity is not due to the introduction of electrostatic repulsion or steric effects but rather by a destabilization of the helical propensity of the LD4 motif. These results further our understanding of the focal adhesion turnover mechanism as well as identify a novel process by which phosphorylation can modulate intracellular signaling.  相似文献   

19.

Background

Efficient cell movement requires the dynamic regulation of focal adhesion (FA) formation and turnover. FAs are integrin-associated sites of cell attachment and establish linkages to the cellular actin cytoskeleton. Cells without focal adhesion kinase (FAK), an integrin-activated tyrosine kinase, exhibit defects in FA turnover and cell motility. Cortactin is an actin binding adaptor protein that can influence FA dynamics. FAK and cortactin interact, but the cellular role of this complex remains unclear.

Principal Findings

Using FAK-null fibroblasts stably reconstituted with green fluorescent protein (GFP) tagged FAK constructs, we find that FAK activity and FAK C-terminal proline-rich region 2 (PRR2) and PRR3 are required for FA turnover and cell motility. Cortactin binds directly to FAK PRR2 and PRR3 sites via its SH3 domain and cortactin expression is important in promoting FA turnover and GFP-FAK release from FAs. FAK-cortactin binding is negatively-regulated by FAK activity and associated with cortactin tyrosine phosphorylation. FAK directly phosphorylates cortactin at Y421 and Y466 and over-expression of cortactin Y421, Y466, and Y482 mutated to phenylalanine (3YF) prevented FAK-enhanced FA turnover and cell motility. However, phospho-mimetic cortactin mutated to glutamic acid (3YE) did not affect FA dynamics and did not rescue FA turnover defects in cells with inhibited FAK activity or with PRR2-mutated FAK that does not bind cortactin.

Conclusions

Our results support a model whereby FAK-mediated FA remodeling may occur through the formation of a FAK-cortactin signaling complex. This involves a cycle of cortactin binding to FAK, cortactin tyrosine phosphorylation, and subsequent cortactin-FAK dissociation accompanied by FA turnover and cell movement.  相似文献   

20.
Paxillin, a structural and signaling scaffold molecule in focal adhesions (FAs), is considered to be important in intracellular signaling transduction and the cell shape changes in response to cyclic stretching. However, the detailed role of paxillin in stretch-induced morphological changes of endothelial cells (ECs) has not fully determined until date. In this study, in order to understand the role of paxillin in the orientation of ECs exposed to cyclic stretching, we examined the time course of changes in the shape and distribution of FA proteins of paxillin knockdown ECs. Non-treated ECs subjected to 20% cyclic stretching at 0.5Hz oriented perpendicularly to the direction of stretching after 10min of exposure. On the other hand, the orientation of paxillin knockdown ECs was abolished at 10min, but it was observed after 60min of cyclic stretching exposure. Immunofluorescent microscopy revealed that accumulation and redistribution of FA proteins, including focal adhesion kinase (FAK) and integrin β1, were observed at 10min of exposure to cyclic stretching in non-treated ECs. The accumulation of FAK and integrin β1 was not prominent in paxillin knockdown ECs under static conditions and after 10min of exposure to cyclic stretching. However, we found that accumulation of FA proteins in paxillin knockdown ECs at 30 and 60min was similar to that in non-transfected ECs. Because paxillin is an adaptor protein offering binding sites for FAK and integrin β1, which are critical molecules for the early signaling events of focal adhesion formation in ECs, these results suggest that paxillin is required for the early phase of EC orientation in response to cyclic stretching by scaffolding for accumulation of FA proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号