首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A detailed NMR study is carried out in acetonitrile/water solutions on three novel cyclic bradykinin antagonist analogues, BKM-824, BKM-870, and BKM-872, to examine their solution structures, and to correlate the structures with bradykinin antagonist and anti-cancer activities. The solution structures of the cyclic peptides are correlated with the structural data for known linear bradykinin antagonists. The sequences are: BKM-824 c[Ava-Ig1-Ser-DF5F-Oic-Arg] where Ava is 5-aminovaleric acid, Ig1 is alpha-(2-indanyl)glycine, F5F is pentafluorophenylalanine, and Oic is (2S,3aS,7aS)-octahydroindole-2-carboxylic acid; BKM-870; c[DArg-Arg-Add-DF5F-Oic-Arg] where Add is 12-aminododecanoic acid; and BKM-872; c[DArg-Arg-Eac-Ser-DF5F-Oic-Arg] where Eac is 6-aminocaproic acid. BKM-824 was the only peptide within this series that possessed a discernable solution structure. The NMR data indicate the presence of a type I beta-turn between residues F5F4 and Ava1, a C-terminal-like end. Molecular dynamics calculations show that a type I beta-turn from DF5F4 to Ava1 does exist although the turn was somewhat distorted. This result differs from the structures seen in linear bradykinin antagonists, which usually possess a type II'beta-turn at the C-terminal end and the presence of a defined turn is correlated with bradykinin antagonist activity. There is no solution structure for BKM-870 and BKM-872 but a correlation between the primary sequence Arg(terminal)-DArg1-Arg2-long chain aliphatic amino acid and anti-cancer activity is evident.  相似文献   

2.
Stewen P  Outi S  Tuulikki N  Frej F 《Life sciences》2004,74(23):2839-2852
We demonstrated bradykinin receptors in human endothelial cells and studied whether bradykinin receptors might be regulated by cyclic AMP. Messenger RNA for bradykinin B(1) and B(2) receptors was detected with real-time PCR and B(2) receptor protein was confirmed by immunoblotting. Saturation binding experiments with increasing concentrations of (125)I-[Tyr(8)]-bradykinin (25-700 pM) were made to determine maximal binding capacity and dissociation constant. However, saturation binding experiments suggested one class of binding sites, maximal binding capacity of 39.3 +/- 1.3 fmol/mg protein and dissociation constant of 352 +/- 27 pM. Competition studies with bradykinin B(1) and B(2) receptor antagonists showed that binding was competed by a B(1) antagonist, and when internalization was inhibited with hypertonic buffer, by both B(1) and B(2) antagonists. Stimulating cells with dibutyryl-cAMP, cholera toxin and forskolin for 24 h increased (125)I-[Tyr(8)]-bradykinin (90 pM) binding with approximately 50%. Saturation binding experiments with dibutyryl-cAMP stimulated cells showed, that the dissociation constant was altered from 352 +/- 27 pM in non-stimulated cells, to 203 +/- 18 pM (P < 0.001) in stimulated cells, while maximal binding capacity remained unchanged. Binding was competed similarly by the B(1) antagonist in stimulated and control cells. These results suggest, that the dibutyryl-cAMP stimulated increase in (125)I-[Tyr(8)]-bradykinin binding is probably due to increased B(1) receptor affinity with no change in receptor capacity. In conclusion, bradykinin B(1) and B(2) receptor mRNA was shown in human endothelial cells. Binding studies suggest that bradykinin receptors are competable with bradykinin antagonists. Adenylate cyclase activators probably increase bradykinin B(1) receptor affinity, without changing capacity, and thus increase bradykinin binding.  相似文献   

3.
The conformation of a series of cyclic enkephalin analogues of a general formula X(1)-cyclo[Y(2)-Z(3)-Nal(4)-Leu(5)] (Nal: beta-(2-naphthyl)alanine), where X = Tyr, Phe, or Phe(NO(2)), Y = D-Dab or L-Dab (Dab: 2,4-diaminobutyric acid), and Z = D-Pro or L-Pro, was studied by means of NMR spectroscopy and theoretical conformational analysis with the Empirical Conformational Energy Program for Peptides and Proteins force field plus solvation. The NMR measurements were performed in dimethyl sulfoxide solution. The nuclear Overhauser effect intensities and coupling constants were used to compute the statistical weights of the conformations of the ensemble generated in global conformational searches. The purpose of this study was to determine whether introducing the D- or L-proline residue in position 3 can produce peptides with both rigid backbone and significant separation of the pharmacophore groups in position 1 and 4 (as required for high affinity for the mu-type opioid receptors). It was found that the analogues with D-Dab in position 2 and D-Pro in position 3 possess a stable type II' beta-turn at positions 3 and 4, which rigidifies the cyclic backbone; this finding was confirmed by independent measurements of the temperature coefficients of the amide protons, which indicated very significant screening of the Leu(5) amide proton from the solvent. However, these analogues were found to possess a short interchromophore distance. The analogues containing both Dab and Pro in the L-configuration are characterized by a larger interchromophore distance; however, they do not possess a stable beta-turn and have therefore a higher conformational flexibility. The modifications proposed in this work are therefore not likely to lead to enkephalin analogues with a high affinity for the mu-receptors.  相似文献   

4.
The NMR structural analysis of two fertilin(beta) mimics cyclo(EC2DC1)YNH2, 1, and cyclo(D2EC2D1C1)YNH2, 2 is described. Both of these mimics are moderate inhibitors of sperm-egg binding with IC50 values of 500 microm in a mouse in vitro fertilization assay. For peptide 1, the optimized conformations that best match the NMR data have a pseudo-type II' beta-turn with the linker and Glu at the i+1 and i+2 positions, respectively. The EC2D1C1 sequence is in a nonclassical (type IV) beta-turn. For peptide 2, the conformation that best matches the NMR data has two turns: a pseudo-type II' beta-turn in the D2EC2D1 sequence followed by a nonclassical beta-turn in the EC2D1C1 sequence. The Cbeta-Cbeta distance between E and D1 in peptide 1 is 9.1 A, in peptide 2, it is 7.7 A. Thus, one possibility for the high IC50 values of these cyclic peptides is that the acidic residues are not constrained to a sufficiently tight turn, and thus much entropy must still be lost upon binding to the alpha6beta1 integrin. This explains why the cyclic peptides are the same as linear peptides at inhibiting sperm-egg binding.  相似文献   

5.
Three peptides, B-10148 (Lys-1-Lys0-Arg1-Pro2-Hyp3-Gly4-Igl5-Ser6- DF5F7-Oic8; where Hyp is trans-4-hydroxyproline, Igl is alpha-(2-indanyl)glycine, F5F is 2,3,4,5,6-pentafluorophenylalanine and Oic is (3aS,7aS)-octahydroindole-2-carboxylic acid), B-10206 (DArg0-Arg1-Pro2-Hyp3-Gly4-Igl5-Ser6-DF 5F7-Nc7G8-Arg9; where Nc7G is N-cycloheptylglycine) and B- 10284 (Arg1-Pro2-Pro3-Gly4-Phe5-Thr6-DTic7-Oic8- NH2; where Tic is 1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid), were studied in detail by NMR spectroscopy in 60% CD3OH /40% H2O and modeled by a simulated annealing protocol to determine their solution structure. B-10148, an extremely potent BK B1 receptor antagonist with very high BK B2 receptor antagonist activity, despite lacking a C-terminal Arg, displayed an ideal type II beta-turn from Pro2 to Igl5, as well as a salt bridge between the guanidino group of Arg1 and the carboXylate group of Oic8. B-10206, the most potent B2 antagonist, also displayed an ideal type II beta-turn from Pro2 to Igl5 but secondary structure was not observed at the C-terminal end. The third peptide, B-10284, a des-Arg9 analog with a C-terminal amide and a very potent B2 antagonist, had no definite solution structure. The high activity of these peptides emphasizes the importance of the N-terminal beta-turn and the hydrophobic character at the C-terminus in determining the activity of bradykinin antagonists.  相似文献   

6.
The results of conformational analysis of linear and cyclic peptides from the 276SALLEDPVG(284) sequence of glycoprotein D of Herpes simplex virus are presented. The epitope peptides were synthesized by SPPS and on resin cyclization was applied for preparation of cyclic compounds. Circular dichroism spectroscopy, Fourier-transform infrared spectroscopy and nuclear magnetic resonance (NMR) were used to determine of the solution structure of both linear and cyclic peptides. The results indicated that the cyclopeptides containing the core of the epitope (DPVG) as a part of the cycle have more stable beta-turn structure than the linear peptides or the cyclic analogues, where the core motif is not a part of the cycle. NMR study of H-SALLc(EDPVGK)-NH(2) confirm presence of a type I beta-turn structure which includes the DPVG epitope core.  相似文献   

7.
High affinity peptide ligands for the bradykinin (BK) B(2) subtype receptor have been shown to adopt a beta-turn conformation of the C-terminal tetrapeptide (H-Arg(1)-Pro(2)-Pro(3)-Gly(4)-Phe(5)-Ser(6)-Pro(7)-Phe(8)-Arg(9)-OH). We investigated the replacement of the Pro(7)-Phe(8) dipeptide moiety in BK or the D-Tic(7)-Oic(8) subunit in HOE140 (H-D-Arg(0)-Arg(1)-Pro(2)-Hyp(3)-Gly(4)-Thi(5)-Ser(6)-D-Tic(7)-Oic(8)-Arg(9)-OH) by 4-amino-1,2,4,5-tetrahydro-2-benzazepin-3-one templates (Aba). Binding studies to the human B(2) receptor showed a correlation between the affinities of the BK analogs and the propensity of the templates to adopt a beta-turn conformation. The L-spiro-Aba-Gly containing HOE140 analog BK10 has the best affinity, which correlates with the known turn-inducing property of this template. All the compounds did not modify basal inositolphosphate (IP) output in B(2)-expressing CHO cells up to 10 microM concentration. The antagonist properties were confirmed by the guinea pig ileum smooth muscle contractility assay. The new amino-benzazepinone (Aba) substituted BK analogs were found to be surmountable antagonists.  相似文献   

8.
Bradykinin is a bioactive hormone involved in a variety of physiological processes. In various solvents, this peptide adopts beta-turn structures. The C-terminal turn is a structural feature for the receptor affinity of agonists and antagonists while the N-terminal turn might be important for antagonistic activities. Polyphenols like dimeric proanthocyanidin B3 interact with the peptide. Thus to investigate the effects of polyphenols on bradykinin activity and structure, we studied the interaction in the structuring solvent DMSO which can be a close mimic of aqueous physiological environments like receptor-binding sites. Bradykinin alone presented a folded structure with two turns. B3 interacted with the peptide C-terminus and involved the loss of the bend structure of this region, while the N-terminus turn was maintained. Numerous studies have shown that polyphenolic molecules can act upon various biological targets, and the formation of this type of complex might be one of the possible modes of action.  相似文献   

9.
The melanocortin receptors are involved in many physiological functions, including pigmentation, sexual function, feeding behavior, and energy homeostasis, making them potential targets for drugs to treat obesity, sexual dysfunction, etc. Understanding the conformational basis of the receptor-ligand interactions is crucial to the design of potent and selective ligands for these receptors. The solution structures of the cyclic melanocortin agonists, partial agonist, and antagonists MTII, VJH085, SHU9119, MK5, and MK9 were determined by two-dimensional nuclear magnetic resonance (2D NMR) spectroscopy at pH 4.5 and 25 degrees C in water (90% H(2)O/10% D(2)O). The overall backbone structures of these cyclic alpha-melanocyte-stimulating hormone (alpha-MSH) analogues around the message sequence (His(6)-D-Phe(7)/D-Nal(2')(7)-Arg(8)-Trp(9)) were similar and reasonably well defined. beta-Turns spanning His(6) and D-Phe(7)/D-Nal(2')(7) were identified in all analogues, and an amphiphilic molecular surface was obtained for the message sequence residues in most structures within the NMR ensembles. The beta-turn, which most closely resembles a type II beta-turn, leads to stacking between the aromatic rings of His(6) and D-Phe(7) in MTII and VJH085. However, no aromatic stacking between His(6) and D-Nal(2')(7) was found in structures of the D-Nal(2')(7)-containing analogues. The difference in the side-chain dispositions of His(6) and D-Nal(2')(7) may be responsible for the reduced potency or antagonist activity of the D-Nal(2')(7)-containing analogues. In addition, our results suggest that the side-chain orientations may also modulate the receptor selectivity. The information found in this study will be useful for the further design of ligands for melanocortin receptors.  相似文献   

10.
The solution conformations of two potent antagonists of bradykinin (Arg1-Pro2-Pro3-Gly4-Phe5-Ser6-Pro7-Phe8-Arg9), [Aca(-1),DArg0,Hyp3,Thi5,DPhe7,(N-Bzl)Gly8]BK (1) and [Aaa(-1),DArg0,Hyp3,Thi5,(2-DNal)7,Thi8]BK (2), were studied by using 2D NMR spectroscopy in DMSO-d6 and molecular dynamics simulations. The NMR spectra of peptide 1 reveals the existence of at least two isomers arising from isomerization across the DPhe7-(N-Bzl)Gly8 peptide bond. The more populated isomer possesses the cis peptide bond at this position. The ratio of cis/trans isomers amounted to 7:3. With both antagonists, the NMR data indicate a beta-turn structure for the Hyp3-Gly4 residues. In addition, for peptide 2, position 2,3 is likely to be occupied by turn-like structures. The cis peptide bond between DPhe7 and (N-Bzl)Gly8 in analogue 1 suggests type VI beta-turn at position 7,8. The molecular dynamics runs were performed on both peptides in DMSO solution. The results indicate that the structure of peptide 1 is characterized by type VIb beta-turn comprising residues Ser6-Arg9 and the betaI or betaII-turn involving the Pro2-Thi5 fragment, whereas peptide 2 shows the tendency towards the formation of type I beta-turn at position 2,3. The structures of both antagonists are stabilized by a salt bridge between the guanidine moiety of Arg1 and the carboxyl group of Arg9. Moreover, the side chain of DArg0 is apart of the rest of molecule and is not involved in structural elements except for a few calculated structures.  相似文献   

11.
Beta-turns are a common secondary structure motif found in proteins that play a role in protein folding and stability and participate in molecular recognition interactions. Somatostatin, a peptide hormone possessing a variety of therapeutically-interesting biological activities, contains a beta-turn in its bioactive conformation. The beta-turn and biological activities of somatostatin have been succesfully mimicked in cyclic hexapeptide analogues. Two novel, structured, non-peptidic molecules were developed that are capable of holding the bioactive tetrapeptide sequence of somatostatin analogues in a beta-turn conformation, as measured by somatostatin receptor (SSTR) binding. Template-constrained cyclic peptides in which the ends of the -Tyr-D-Trp-Lys-Val-tetrapeptide were linked by scaffolds based on either an N,N'-dimethyl-N,N'-diphenylurea or a substituted biphenyl system (DJS631 and DJS811, respectively), bound selectively to mouse SSTR2B and rat and human SSTR5 with affinities as high as 1 nM. DJS811, at a dose of 3 mg/kg/day, was shown in a mouse Matrigel model to inhibit angiogenesis to a level of 79%. The development of structured turn scaffolds allows beta-turn sequences to be contained in the context of a compact structure, with less peptidic nature and potentially greater bioavailability than cyclic hexapeptides. These systems can be used to study the determinants of beta-turn formation, as well as to probe the importance of turn sequences occurring in molecular recognition interactions. The antiangiogenic activity of DJS811 suggests that it may have antitumor activity as well. In addition, because SSTR2 is overexpressed on many types of tumors, DJS631 and DJS811 may be useful in the development of agents for tumor imaging or the radiotherapy of cancer.  相似文献   

12.
Chemically funtionalized analogues of antagonists of the P2X(7) receptor, an ATP-gated cation channel, were synthesized as tools for biophysical studies of the receptor. These functionalized congeners were intended for use in chemical conjugation with retention of biological potency. The antagonists were L-tyrosine derivatives, related to [N-benzyloxycarbonyl-O-(4-arylsulfonyl)-L-tyrosyl]benzoylpiperazine (such as MRS2409, 2). The analogues were demonstrated to be antagonists in an assay of human P2X(7) receptor function, consisting of inhibition of ATP-induced K(+) efflux in HEK293 cells expressing the recombinant receptor. The analogues were of the general structure R(1)-Tyr(OR(2))-piperazinyl-R(3), in which three positions (R(1)-R(3)) were systematically varied in structure through introduction of chemically reactive groups. Each of the three positions was designed to incorporate a 3- or 4-nitrophenyl group. The nitro groups were reduced using NaBH(4)-copper(II) acetylacetonate to amines, which were either converted to the isothiocyanate groups, as potential affinity labels for the receptor, or acylated, as models for conjugation. An alternate route to N(alpha)-3-aminobenzyloxycarbonyl functionalization was devised. The various positions of functionalization were compared for effects on biological potency, and the R(2) and R(3) positions were found to be most amenable to derivatization with retention of high potency. Four dimeric permutations of the antagonists were synthesized by coupling each of the isothiocyanate derivatives to either the precursor amine or to other amine congeners. Only dimers linked at the R(2)-position were potent antagonists. In concentration-response studies, two derivatives, a 3-nitrobenzyloxycarbonyl derivative 18 and a 4-nitrotoluenesulfonate 26b, displayed IC(50) values of roughly 100 nM as antagonists of P2X(7) receptor-mediated K(+) flux.  相似文献   

13.
We report the first homology model of human bradykinin receptor B1 generated from the crystal structure of bovine rhodopsin as a template. Using an automated docking procedure, two B1 receptor antagonists of the dihydroquinoxalinone structural class were docked into the receptor model. Site-directed mutagenesis data of the amino acid residues in TM1, TM3, TM6, and TM7 were incorporated to place the compounds in the binding site of the homology model of the human B1 bradykinin receptor. The best pose in agreement with the mutation data was selected for detailed study of the receptor-antagonist interaction. To test the model, the calculated antagonist-receptor binding energy was correlated with the experimentally measured binding affinity (K(i)) for nine dihydroquinoxalinone analogs. The model was used to gain insight into the molecular mechanism for receptor function and to optimize the dihydroquinoxalinone analogs.  相似文献   

14.
The synthesis and structure-activity relationships of a novel series of aroylpyrrole alkylamides as potent selective bradykinin B(2) receptor antagonists are described. Several members of this series display nanomolar affinity at the B(2) receptor and show activity in an animal model of antinociception.  相似文献   

15.
The secondary structure of a bradykinin B(1)receptor antagonist B-10324 (F5C-Lys-(1)- Lys(0)-Arg(1)-Pro(2)- Hyp(3)-Gly(4)-CpG(5)- Ser(6)-DTic(7)-CpG(8)) was determined by NMR at 800MHz. The conformational data are compared with those obtained previously for two bradykinin B(1) receptor antagonists, namely B-9858 (Lys-(1)- Lys(0)-Arg(1)-Pro(2)- Hyp(3)-Gly(4)-Igl(5)- Ser(6)-DIgl(7)-Oic(8)) and B-10148 (Lys-(1)-Lys(0)-Arg(1)- Pro(2)-Hyp(3)-Gly(4)- Igl(5)-Ser(6)-DF5F(7)- Oic(8)). The abnormal amino acids are: Hyp, trans-4- hydroxyproline; Tic, 1, 2, 3, 4-tetrahydroisoquinoline-3-carboxylic acid; Oic, (2S, 3aS, 7aS)-octahydroindole-2-carboxylic acid; Igl, alpha(2- indanyl)glycine; F5F, 2,3,4,5,6-pentafluorophenylalanine; CpG, alpha- cyclopentylglycine. F5C, pentafluorocinnamoyl, is the N-terminal protecting group and is not involved in the peptide secondary structure. B-10324 contains an N-terminal Pro(2)- CpG(5) distorted type II beta-turn whereas the rest of the peptide is random. A salt bridge is not observed between the carboxylate group at the C-terminal end and the Arg(1) side chain, in contrast to that previously observed for B-9858 and B- 10148. The conformations are correlated with the measured B(1) receptor antagonist activities (J.-F. Larrivée, L. Gera, S. Houle, J. Bouthillier, D. R. Bachvarov, J. M. Stewart and F. Marc au, Br. J. Pharmacol. 131, 885-892 (2000)). The importance of the N-terminal beta-turn is highlighted.  相似文献   

16.
We describe the binding of [3H]bradykinin to homogenates of guinea pig brain, lung, and ileum. Analysis of [3H]bradykinin binding kinetics in guinea pig brain, lung, and ileum suggests the existence of two binding sites in each tissue. The finding of two binding sites for [3H]bradykinin in ileum, lung, and brain was further supported by Scatchard analysis of equilibrium binding in each tissue. [3H]Bradykinin binds to a high-affinity site in brain, lung, and ileum (KD = 70-200 pM), which constitutes approximately 20% of the bradykinin binding, and to a second, lower-affinity site (0.63-0.95 nM), which constitutes the remaining 80% of binding. Displacement studies with various bradykinin analogues led us to subdivide the high- and lower-affinity sites in each tissue and to suggest the existence of three subtypes of B2 receptors in the guinea pig, which we classify as B2a, B2b, and B2c. Binding of [3H]bradykinin is largely to a B2b receptor subtype, which constitutes the majority of binding in brain, lung, and ileum and represents the lower-affinity site in our binding studies. Receptor subtype B2c constitutes approximately 20% of binding sites in the brain and lung and is equivalent to the high-affinity site in brain and lung. We suggest that a third subtype of B2 receptor (high-affinity site in ileum), B2a, is found only in the ileum. All three subtypes of B2 receptors display a high affinity for bradykinin, whereas they show different affinities for various bradykinin analogues displaying agonist or antagonist activities.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Antisauvagine-30 (aSVG) is the only high-affinity antagonist for the corticotropin-releasing factor (CRF) type 2 (CRF(2)) receptor. A structure-activity relationship study was performed to pinpoint residues conferring aSVG's selectivity. The aSVG-analogues being N-terminally extended by one or two residues or containing the Ala(22)Arg(23)Ala(24) (ARA-motif) of CRF, were synthesized. Additionally, a lactam bridge between positions 29 and 32 was introduced. The modified peptides were analyzed for alpha-helicity properties, binding affinities and antagonistic potencies at the rat CRF(1) and mouse CRF(2B) receptors. While N-terminal prolongation and replacement of D-Phe(11) by Tyr(11) increased the affinity for the CRF(2) receptor, the introduction of the ARA motif resulted in a loss of CRF(2) receptor selectivity. These data show that aSVG(10-40) analogues are more potent CRF(2) receptor antagonists than aSVG(11-40) peptides, while introduction of the ARA-motif or a cyclic constraint between residues 29 and 32 favors binding to the CRF(1) receptor.  相似文献   

18.
Continuing the studies on structural requirements of bradykinin antagonists, it has been found that analogues with dehydrophenylalanine (ΔPhe) or its ring‒substituted analogues (ΔPhe(X)) at position 5 act as antagonists on guinea pig pulmonary artery, and on guinea pig ileum. Because both organs are considered to be bradykinin B2receptor tissues, the analogues with ΔPhe or ΔPhe(X) at position 5, but without any replacement at position 7, seem to represent a new structural type of B2receptor antagonist. All the analogues investigated act as partial antagonists; they inhibit the bradykinin‒induced contraction at low concentrations and act as agonists at higher concentrations. Ring substitutions by methyl groups or iodine reduce both the agonistic and antagonistic activity. Only substitution by fluorine gives a high potency. Incorporation of ΔPhe into different representative antagonists with key modifications at position 7 does not enhance the antagonist activity of the basic structures, with one exception. Only the combination of ΔPhe at position 5 with D Phe at position 7 increases the antagonistic potency on guinea pig ileum by about one order of magnitude. Radio‒ligand binding studies indicate the importance of position 5 for the discrimination of B2receptor subtypes. The binding affinity to the low‒affinity binding site (KL) was not significantly changed by replacement of Phe by ΔPhe. In contrast, ring‒methylation of ΔPhe results in clearly reduced binding to KL. The affinity to the high‒affinity binding site (KH) was almost unchanged by the replacement of Phe in position 5 by ΔPhe, whereas the analogue with 2‒methyl‒dehydrophenylalanine completely failed to detect the KH‒site. The peptides were synthesized on the Wang‒resin according to the Fmoc/Butstrategy using Mtr protection for the side chain of Arg. The dehydrophenylalanine analogues were prepared by a strategy involving PyBop couplings of the dipeptide unit Fmoc‒Gly‒ΔPhe(X)‒OH to resin‒bound fragments. © 1998 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

19.
Abstract

A detailed NMR study is carried out in acetonitrile/water solutions on three novel cyclic bradykinin antagonist analogues, BKM-824, BKM-870, and BKM-872, to examine their solution structures, and to correlate the structures with bradykinin antagonist and anti-cancer activities. The solution structures of the cyclic peptides are correlated with the structural data for known linear bradykinin antagonists. The sequences are: BKM-824 c[Ava-Igl-Ser-DF5F-Oic- Arg] where Ava is 5-aminovaleric acid, Igl is α-(2-indanyl)glycine, F5F is pentafluorophenylalanine, and Oic is (2S,3aS,7aS)-octahydroindole-2-carboxylic acid; BKM-870; c[DArg-Arg-Add-DF5F-Oic-Arg] where Add is 12-aminododecanoic acid; and BKM-872; c[DArg-Arg-Eac-Ser-DF5F-Oic-Arg] where Eac is 6-aminocaproic acid. BKM-824 was the only peptide within this series that possessed a discernable solution structure. The NMR data indicate the presence of a type I β-turn between residues F5F4 and Ava1, a C-terminal-like end. Molecular dynamics calculations show that a type I β-turn from DF5F4 to Ava1 does exist although the turn was somewhat distorted. This result differs from the structures seen in linear bradykinin antagonists, which usually possess a type II II′β-turn at the C-terminal end and the presence of a defined turn is correlated with bradykinin antagonist activity. There is no solution structure for BKM-870 and BKM-872 but a correlation between the primary sequence Argterminal-DArg1-Arg2-long chain aliphatic amino acid and anti-cancer activity is evident.  相似文献   

20.
Antagonism of the bradykinin B(1) receptor represents a potential treatment for chronic pain and inflammation. Novel antagonists incorporating alpha-hydroxy amides were designed that display low-nanomolar affinity for the human bradykinin B(1) receptor and good bioavailability in the rat and dog. In addition, these functionally active compounds show high passive permeability and low susceptibility to phosphoglycoprotein mediated efflux, predictive of good CNS exposure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号