首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The response to iron deficiency was investigated in 16 ecotypes of Arabidopsis thaliana (L.) Heynh. and in Arabidopsis griffithiana. An increase in root ferric reductase activity was observed under conditions of iron deficiency in these ecotypes and in both species. This observation is consistent with a Strategy I response which is typical for dicot plants. A. griffithiana, however, showed a lower induction of ferric reductase activity in response to iron deficiency than that of the commonly studied A. thaliana Columbia ecotypes.  相似文献   

2.
Summary A population of A. thaliana, produced by self-fertilization of ethylmethane sulfonate treated plants, was exposed to chlorate in the watering solution, and plants showing early susceptibility symptoms were rescued. Among the progeny lines of these plants five were shown to be repeatably chlorate-hypersusceptible. One of these lines (designated C-4) possessed elevated activity of nitrate reductase (NR). The NR activity of mutant C-4 was higher than that of normal plants throughout the life cycle. Nitrite reductase and glutamine synthetase activities of C-4 were normal, as were chlorate uptake rate and tissue nitrate content. The elevated NR activity apparently was responsible for the chlorate hypersusceptibility of C-4. Inheritance studies of NR indicated that the elevated activity of C-4 was probably controlled by a single recessive allele.  相似文献   

3.
4.
Mukherjee I  Campbell NH  Ash JS  Connolly EL 《Planta》2006,223(6):1178-1190
The Arabidopsis FRO2 gene encodes the iron deficiency-inducible ferric chelate reductase responsible for reduction of iron at the root surface; subsequent transport of iron across the plasma membrane is carried out by a ferrous iron transporter (IRT1). Genome annotation has identified seven additional FRO family members in the Arabidopsis genome. We used real-time RT-PCR to examine the expression of each FRO gene in different tissues and in response to iron and copper limitation. FRO2 and FRO5 are primarily expressed in roots while FRO8 is primarily expressed in shoots. FRO6 and FRO7 show high expression in all the green parts of the plant. FRO3 is expressed at high levels in roots and shoots, and expression of FRO3 is elevated in roots and shoots of iron-deficient plants. Interestingly, when plants are Cu-limited, the expression of FRO6 in shoot tissues is reduced. Expression of FRO3 is induced in roots and shoots by Cu-limitation. While it is known that FRO2 is expressed at high levels in the outer layers of iron-deficient roots, histochemical staining of FRO3-GUS plants revealed that FRO3 is predominantly expressed in the vascular cylinder of roots. Together our results suggest that FRO family members function in metal ion homeostasis in a variety of locations in the plant.  相似文献   

5.
Helianthus annuus L. responds to iron deficiency by forming a thickened cortex and abundant root hairs in a zone near the root apex that corresponds to the primary developmental stage. Cytological investigations revealed that within 24 to 48 h of iron deficiency most of the peripheral cells differentiate into transfer cells. The wall labyrinth is always situated on the peripheral walls that face the external medium. The cytoplasm of these cells is characterized by numerous mitochondria, extensive rough endoplasmic reticulum, and large leucoplasts containing protein bodies. These observations are discussed in relation to the fact that Helianthus, as an iron efficient plant, responds physiologically to iron deficiency by extrusion of H+, production of reducing substances, and a steep increase in the uptake efficiency of Fe.  相似文献   

6.
The uptake of 59Fe from FeCl3, ferric (Fe3+) citrate (FeCitr) and Fe3+-EDTA (FeEDTA) was studied in leaf mesophyll of Vigna unguiculata (L.) Walp. Uptake rates decreased in the order FeCl3>FeCitrFeEDTA, and uptake depended on an obligatory reduction step of Fe3+ to Fe2+, after which the ion could be taken up independently of the chelator, citrate. Uptake was strongly increased by photosynthetically active light (>630 nm), and kinetic analysis revealed saturation kinetics with a K m (FeCitr) of 80–110 M. In the presence of an external Fe2+ scavenger, bathophenanthroline disulfonate, the mesophyll also reduced external FeCitr with a K m of approx. 50–60 M. The reduction rates for FeCitr were five-to eightfold higher than necessary for uptake. Purified plasma membranes from leaves revealed an NADH-dependent FeCitr- and FeEDTA-reductase activity, which had a pH optimum of 6.5–6.8 and a K m of approx. 20 M for NADH. Under anaerobic conditions, a K m of 130–170 M for ferric chelates was obtained, while in the presence of oxygen a K m (FeCitr) of approx. 100 M was found. It is concluded that the leaf plasma membrane provides a ferric-chelate-reductase activity, which plays a crucial role in iron uptake of leaf cells. Under in-vivo conditions, however, reactive oxygen species or strong (blue) light may also contribute to the obligatory reduction of Fe3+ prior to uptake.Abbreviations BPDS bathophenanthroline disulfonate - DCMU 3-(3,4 dichlorophenyl)-1,1-dimethyl urea - FCR ferricchelate reductase - FeCitr Fe3+-citrate - FeEDTA Fe3+-EDTA - PM plasma membrane This work was supported by the SCIENCE program of the European Community (contract no. SC1000344; P.R.M.). We wish to thank P. Siersma and C. Winter for their cooperation at the Central Isotope Laboratory of the Biological Centre of the University of Groningen.  相似文献   

7.
Summary Cells of the root epidermis ofPisonia grandis R. Br. at the interface with the mycorrhizal fungus are modified as transfer cells. The length of wall profile in transverse section is increased 1.7-fold by the wall ingrowths, on average, over the outer tangential wall and the outer third of the radial walls; this corresponds to a 1.3—fold increase in wall profile length over the whole cell. These increases in length of wall profile approximate—slightly underestimating-the amplification of surface area of the epidermal cells that results from the ingrowths. The surface area between the symbionts in thePisonia mycorrhiza is less amplified than in classical ectomycorrhizas with a Hartig net: this may be functionally adequate because of the extremely high nutrient status of theP. grandis habitat.  相似文献   

8.
This paper describes, for the first time, de novo adventitious root formation from thin cell layers (TCLs) of Arabidopsis thaliana. The objective of the study was to determine the optimal hormonal and light conditions and the optimal exogenous Ca2+ concentration for obtaining adventitious rooting (AR) from A. thaliana TCLs and to identify the tissue(s) involved in the process. The results show that maximum AR was obtained with a single-phase method in the presence of 10 M indole-3-butyric acid and 0.1 M kinetin under continuous darkness for 30 days and with 0.6 mM exogenous CaCl2. The endodermis was the only tissue involved in root meristemoid formation. The role of Ca2+ in AR and the importance of using Arabidopsis TCLs in studies on the genetic/biochemical control of AR are discussed.Abbreviations AR Adventitious rooting - CIM Callus-inducing medium - Col-0 Columbia ecotype - 2,4-D 2,4-Dichlorophenoxyacetic acid - HFM Hormone-free medium - HM Medium with 10 M IBA and 0.1 M Kin - IBA Indole-3-butyric acid - Kin Kinetin - LS Longitudinal section - NAA -Naphthaleneacetic acid - RIM Root-inducing medium - TCL Thin cell layer - WS Wassilewskija ecotype  相似文献   

9.
The role of extracellular Ca2+ in root-hair tip growth has been investigated in Arabidopsis thaliana (L.) Heynh. Root-hair length was found to be dependent on the concentration of Ca2+ in the growth medium, with maximum length achieved at [Ca2+] of 0.3–3.0 mM. Using a non-intrusive calcium-specific vibrating microelectrode, an extracellular Ca2+ gradient was detected at the tips of individual growing root-hair cells. The direction of the gradient indicated a net influx of Ca2+ into root-hair cells. No gradient was detected near the sides of the root hairs or at the tips of non-growing root hairs. When root hairs were exposed to the Ca2+-channel blocker nifedipine, tip growth stopped and the extracellular Ca2+ gradient was abolished. These results indicate that Ca2+ influx through plasma-membrane Ca2+ channels is required for normal root-hair tip growth.Abbreviation APW artificial pond water We thank L.F. Jaffe, W. Kuhtreiber and A. Miller of the National Vibrating Probe Facility, Marine Biological Laboratory, Woods Hole, Mass., USA for their technical assistance and helpful discussions. We also thank Liam Dolan, Martin Steer, and Susan Ford for helpful discussions. This research was supported by National Science Foundation grant PCM-9004568.  相似文献   

10.
The insertion of foreign DNA in plants occurs through a complex interaction between Agrobacteria and host plant cells. The marker gene β-glucuronidase of Escherichia coli and cytological methods were used to characterize competent cells for Agrobacterium-mediated transformation, to study early cellular events of transformation, and to identify the potential host-cell barriers that limit transformation in Arabidopsis thaliana L. Heynh. In cotyledon and leaf explants, competent cells were mesophyll cells that were dedifferentiating, a process induced by wounding and-or phytohormones. The cells were located either at the cut surface or within the explant after phytohormone pretreatment. In root explants, competent cells were present in dedifferentiating pericycle, and were produced only after phytohormone pretreatment. Irrespective of their origin, the competent cells were small, isodiametric with thin primary cell walls, small and multiple vacuoles, prominent nuclei and dense cytoplasm. In both cotyledon and root explants, histological enumeration and β-glucuronidase assays showed that the number of putatively competent cells was increased by preculture treatment, indicating that cell activation and cell division following wounding were insufficient for transformation without phytohormone treatment. Exposure of explants for 48 h to A. tumefaciens produced no characteristic stress response nor any gradual loss of viability nor cell death. However, in the competent cell, association between the polysaccharide of the host cell wall and that of the bacterial filament was frequently observed, indicating that transformation required polysaccharide-to-polysaccharide contact. Flow cytofluorometry and histological analysis showed that abundant transformation required not only cell activation (an early state exhibiting an increase in nuclear protein) but also cell proliferation (which in cotyledon tissue occurred at many ploidy levels). Noncompetent cells could be made competent with the appropriate phytohormone treatments before bacterial infection: this should aid analysis of critical steps in transformation procedures and should facilitate developing new strategies to transform recalcitrant plants.  相似文献   

11.
The root hairs of plants are tubular projections of root epidermal cells and are suitable for investigating the control of cellular morphogenesis. In wild-typeArabidopsis thaliana (L.) Heynh, growing root hairs were found to exhibit cellular expansion limited to the apical end of the cell, a polarized distribution of organelles in the cytoplasm, and vesicles of several types located near the growing tip. Therhd3 mutant produces short and wavy root hairs with an average volume less than one-third of the wild-type hairs, indicating abnormal cell expansion. The mutant hairs display a striking reduction in vacuole size and a corresponding increase in the relative proportion of cytoplasm throughout hair development. Bead-labeling experiments and ultrastructural analyses indicate that the wavy-hair phenotype of the mutant is caused by asymmetric tip growth, possibly due to abnormally distributed vesicles in cortical areas flanking the hair tips. It is suggested that a major effect of therhd3 mutation is to inhibit vacuole enlargement which normally accompanies root hair cell expansion.  相似文献   

12.
Cell biology and genetics of root hair formation inArabidopsis thaliana   总被引:4,自引:0,他引:4  
Ryan E  Steer M  Dolan L 《Protoplasma》2001,215(1-4):140-149
Summary In this review we integrate the information available on the cell biology of root hair formation with recent findings from the analysis of root hair mutants ofArabidopsis thaliana. The mature Arabidopsis root epidermis consists of root-hair-producing cells and non-root-hair-producing cells. Root hair growth begins with a swelling of the outer epidermal wall. It has been postulated that this is due to a pH-mediated localised cell wall loosening. From the bulge a single root hair emerges which grows by tip growth. The root hair tip consists of a vesicle-rich zone and an organelle-rich subapical zone. The vesicles supply new plasma membrane and cell wall material for elongation. The cytoskeleton and its associated regulatory proteins such as profilin and spectrin are proposed to be involved in the targeting of vesicles. Ca2+ influxes and gradients are present in hair tips, but their function is still unclear. Mutants have been isolated with lesions in various parts of the root hair developmental pathway from bulge identity and initiation, to control of tip diameter and extent and polarity of elongation.Abbreviations [Ca2+]c cytosolic calcium concentration - MT microtubule - PM plasma membrane - VRZ vesicle-rich zone - WT wild type Dedicated to Professor Brian E. S. Gunning on the occasion of his 65th birthday  相似文献   

13.
14.
Plant tip growth has been recognized as an actin-based cellular process requiring targeted exocytosis and compensatory endocytosis to occur at the growth cone. However, the identity of subcellular compartments involved in polarized membrane trafficking pathways remains enigmatic in plants. Here we characterize endosomal compartments in tip-growing root hair cells. We demonstrate their presence at the growing tip and differential distribution upon cessation of tip growth. We also show that both the presence of endosomes as well as their rapid movements within the tip region depends on an intact actin cytoskeleton and involves actin polymerization. In conclusion, actin-propelled endosomal motility is tightly linked to the polar tip growth of root hairs.  相似文献   

15.
Plant roots accumulate K+ over a range of external concentrations. Root cells have evolved at least two parallel plasma-membrane K+ transporters which operate at millimolar and micromolar external [K+]: high-affinity K+ uptake is energised by symport with H+, while low-affinity uptake is assumed to occur via ion channels. To determine the role of ion channels in low-affinity K+ uptake, a characterisation of the principal K+-selective ion channels in the plasma membrane of Arabidopsis thaliana (L.) Heynh. cv. Columbia roots was undertaken. Two classes of K+-selective channels were frequently observed: one inward (IRC) and one outward (ORC) rectifying with unitary conductances of 5 pS, 20 pS (IRCs) and 15 pS (ORC), measured in symmetrical 10 mM KCl. The dominant IRC (5 pS) and ORC (15 pS) were highly cation-selective (PCl PK < 0.025) but less selective amongst monovalent cations (PNaPK0.17–0.3). Both the IRC and the ORC were blocked by Ba2+, Cs+ and tetra-ethyl-ammonium, whereas 4-aminopyridine and quinidine selectively inhibited the ORC. The ORC open probability was steeply voltage-dependent and ORC activation potentials were close to the potassium equilibrium potential (EK+), enabling ORCs to conduct mainly outward, but occasionally inward, K+ current. By contrast, gating of the 5-pS IRC was weakly voltageependent and IRC gating was invariably restricted to membrane potentials more negative than EK+, ensuring K+ transport was always inwardly directed. Studies on channel activity were conducted for a large number of root cells grown at two levels of external [K+], one where K+ uptake is likely to be principally through channels (6 mM K+) and one where it must be energised (100 M K+). Shifting growth conditions from high to low K+ did not affect single-channel properties such as conductance and selectivity, nor the manifestation of the ORC and 20-pS IRC, but led to enhanced activity of the 5-pS IRC. The enhanced activity of the 5-pS IRC was mirrored by a parallel increase in unidirectional 86Rb+ influx after low-K+ growth, clearly indicating a dominant role of this particular channel in K+ uptake at supra millimolar external [K+].Abbreviations EK+ potassium equilibrium potential - Em membrane potential - HK high [K+] - IRC inward rectifying channel - LK low [K+] - ORC outward rectifying channel - TEA tetra-ethyl-ammonium Financial support was provided by the Biotechnology and Biological Sciences Research Council (Grant PG87/529) and by the European Union (Framework III, Biotechnology Programme).  相似文献   

16.
Root hair development is controlled by environmental signals. Studies on root hair plasticity in Arabidopsis thaliana have mainly focused on phosphate and iron deficiency. Root hair growth and development and their physiological role in response to salt stress are largely unknown. Here, we show that root epidermal cell types and root hair development are highly regulated by salt stress. Root hair length and density decreased significantly in a dose-dependent manner on both primary roots and junction sites between roots and shoots. The root hair growth and development were sensitive to inhibition by ions but not to osmotic stress. High salinity also alters anatomical structure of roots, leading to a decrease in cell number in N positions and enlargement of the cells. Moreover, analysis of the salt overly sensitive mutants indicated that salt-induced root hair response is caused by ion disequilibrium and appears to be an adaptive mechanism that reduces excessive ion uptake. Finally, we show that genes WER, GL3, EGL3, CPC, and GL2 might be involved in cell specification of root epidermis in stressed plants. Taken together, data suggests that salt-induced root hair plasticity represents a coordinated strategy for early stress avoidance and tolerance as well as a morphological sign of stress adaptation.  相似文献   

17.
Flavonoid diversity and biosynthesis in seed of Arabidopsis thaliana   总被引:1,自引:0,他引:1  
Functional characterization of genes involved in the flavonoid metabolism and its regulation requires in-depth analysis of flavonoid structure and composition of seed from the model plant Arabidopsis thaliana. Here, we report an analysis of the diverse and specific flavonoids that accumulate during seed development and maturation in wild types and mutants. Wild type seed contained more than 26 different flavonoids belonging to flavonols (mono and diglycosylated quercetin, kaempferol and isorhamnetin derivatives) and flavan-3-ols (epicatechin monomers and soluble procyanidin polymers with degrees of polymerization up to 9). Most of them are described for the first time in Arabidopsis. Interestingly, a novel group of four biflavonols that are dimers of quercetin-rhamnoside was also detected. Quercetin-3-O-rhamnoside (the major flavonoid), biflavonols, epicatechin and procyanidins accumulated in the seed coat in contrast to diglycosylated flavonols that were essentially observed in the embryo. Epicatechin, procyanidins and an additional quercetin-rhamnoside-hexoside derivative were synthesized in large quantities during seed development, whereas quercetin-3-O-rhamnoside displayed two peaks of accumulation. Finally, 11 mutants affected in known structural or regulatory functions of the pathway and their three corresponding wild types were also studied. Flavonoid profiles of the mutants were consistent with previous predictions based on genetic and molecular data. In addition, they also revealed the presence of new products in seed and underlined the plasticity of this metabolic pathway in the mutants.  相似文献   

18.
Dieter Volkmann 《Planta》1984,162(5):392-403
Growing root hairs of cress (Lepidium sativum L.) were investigated using freeze-fracture and electron-microscopic techniques. Three zones of differentiation could be detected: the tip zone, the zone of vacuolation and the foot zone. Corresponding to these zones, the plasmatic fracture face of the plasma membrane showed areas of pronounced differentiation with respect to the distribution and frequency of intramembranous particles (IMPs). The tip zone was characterized by an irregular fracture plane caused by a large number of blisters which were more or less free of IMPs. These blisters coincided in size and shape with Golgi vesicles accumulated in the ground cytoplasm near the very tip. Outside these blisters, IMPs were randomly distributed. The surrounding cell wall was very thin and mainly composed of amorphous material. The plasma membrane of the vacuolation zone often revealed areas of hexagonally ordered particles (HOPS). Such patterns of particles were observed in chemically fixed and unfixed root hairs with a maximum surface density of 1200 HOPS per area. Mostly, however, 15–50 HOPS per area were found. The number of such areas increased with increasing distance from the tip up to five areas per m2. Additionally, imprints of large cellulose microfibrils could be detected in unfixed material; they were mainly parallel to the root-hair axis and sometimes ended in areas of HOPS. However, HOPS were observed only in approximately 60% of the root hairs. Otherwise, large areas free of IMPs were interspersed between areas of randomly distributed IMPs. The particle frequency was relatively low and varied greatly in the tip as well as in the vacuolation zone, that is, from 1200 to 2000 IMPs m-2. Finally, the plasma membrane of the foot zone showed a very constant number of approx. 2000 IMPs m-2. These particles were mainly distinct and randomly distributed. In this zone, HOPS were never observed in spite of the fact that the cell wall was composed of numerous parallel-running cellulose microfibrils. Since membrane material is mainly incorporated in the tip zone where IMPs are statistically distributed, the results indicate that the plasma membrane of the outgrowing part of the root-hair cells is characterized by a high lateral mobility of its components. Furthermore, they indicate that specifically arranged particles are involved in the synthesis of cellulose microfibrils. These areas of HOPS seem to be locally restricted and — or limited with respect to their lifetime.Abbreviations cmf(s) cellulose microfibril(s) - EF extraplasmatic fracture face - HOPS hexagonally ordered particles - IMP intramembranous particle - PF plasmatic fracture face - pm plasma membrane Dedicated to Professor Dr. Kurt Mühlethaler, Zürich, on the occasion of his 65th birthday  相似文献   

19.
Arabidopsis thaliana (L.) Heynh. cv. Landsberg erecta was grown under light regimes of differing spectral qualities, which results in differences in the stoichiometries of the two photosynthetic reaction centres. The acclimative value of these changes was investigated by assessing photosynthetic function in these plants when exposed to two spectrally distinct actinic lights. Plants grown in an environment enriched in far-red light were better able to make efficient use of non-saturating levels of actinic light enriched in long-wavelength red light. Simultaneous measurements of chlorophyll fluorescence and absorption changes at 820 nm indicated that differences between plants grown under alternative light regimes can be ascribed to imbalances in excitation of photosystems I and II (PSI, PSII). Measurements of chlorophyll fluorescence emission and excitation spectra at 77 K provided strong evidence that there was little or no difference in the composition or function of PSI or PSII between the two sets of plants, implying that changes in photosynthetic stoichiometry are primarily responsible for the observed differences in photosynthetic function.Abbreviations Chl chlorophyll - FR far-red light - HF highirradiance FR-enriched light (400 mol·m–2·s–1, RFR = 0.72) - HW high-irradiance white light (400 mol·m–2 1·1 s–1RFR = 1.40) - LHCI, LHCII light-harvesting complex of PSI, PSII - qO quenching of dark-level chlorophyll fluorescence - qN non-photochemical quenching of variable chlorophyll fluorescence - qP photochemical quenching of variable chlorophyll fluorescence - R red light - Rubisco ribulose-1,5-bisphosphate carboxylase/oxygenase We thank Dr. Sasha Ruban for assistance with the 77 K fluorescence measurements and for helpful discussions. This work was supported by Natural Environment Research Council Grant GR3/7571A.  相似文献   

20.
Morphological analysis of flowers was carried out in Arabidopsis thaliana wild type plants and agamous and apetala2 mutants. No direct substitution of organs takes place in the mutants, since the number and position of organs in them do not correspond to the structure of wild type flower. In order to explain these data, a notion of spatial pattern formation in the meristem was introduced, which preceded the processes of appearance of organ primordia and formation of organs. Zones of acropetal and basipetal spatial pattern formation in the flower of wild type plants were postulated. It was shown that the acropetal spatial pattern formation alone took place in agamous mutants and basipetal spatial pattern formation alone, in apetala2 mutants. Different variants of flower structure are interpreted as a result of changes in the volume of meristem (space) and order of spatial pattern formation (time).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号