首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
细菌外毒素序列中特有模体的识别及其基因本体注释分析   总被引:1,自引:0,他引:1  
【目的】识别细菌外毒素序列中特有模体,进一步理解外毒素的致病机制。【方法】构建非致病性细菌蛋白质数据库,利用InterProScan对数据库中非致病菌蛋白质序列以及收集的经实验确认的89条细菌外毒素蛋白质序列进行模体搜索。【结果】在89条细菌外毒素序列中,分析得到了39个细菌外毒素特有模体。【结论】得到的外毒素特有模体与外毒素功能密切相关,为在致病性细菌基因组内搜索外毒素序列奠定了基础;同时通过对外毒素特有模体的基因本体(Gene ontology,GO)注释分析,进一步阐明了细菌外毒素的致病机制。  相似文献   

2.
劳盆地深海热液喷口沉积物中细菌多样性研究   总被引:1,自引:1,他引:0  
采用PCR-RFLP技术调查了劳盆地深海热液喷口两位点沉积物中的细菌多样性。结果表明, 在劳盆地深海热液喷口沉积物环境中细菌多样性十分丰富, 样品DY1中发现6个细菌类群, DY2中则存在4个细菌类群, 其中Gammaproteobacteria细菌亚群和Epsilonproteobacteria细菌亚群在两文库中均占据最大比例, 为沉积物样品中的优势菌群。另外, 在克隆文库中还发现了一些与数据库中的已知序列同源性较低的类群, 从而说明劳盆地深海热液喷口沉积物中存在特有的微生物种属。  相似文献   

3.
Our planet holds a huge bacterial diversity. Most of these bacteria have only been detected by their 16S rRNA gene sequences remaining to be cultured. Many are classified within Candidate Divisions. One them is the Candidate Division OP10. Analysis of environmental 16S rRNA gene sequences available in public repositories revealed the existence of numerous sequences clustering within the Candidate Division OP10 but currently unclassified or assigned to other bacterial phyla. Newly proposed 16S rRNA sequences multiply several fold the reported sequences for the Candidate Division OP10. This study showed that the Candidate Division OP10 is a diverse and broadly distributed bacterial phylum and represents a stable microbial component in different natural environments.  相似文献   

4.
The diversity of the equine fecal bacterial community was evaluated using pyrosequencing of 16S rRNA gene amplicons. Fecal samples were obtained from horses fed cool-season grass hay. Fecal bacteria were characterized by amplifying the V4 region of bacterial 16S rRNA gene. Of 5898 mean unique sequences, a mean of 1510 operational taxonomic units were identified in the four fecal samples. Equine fecal bacterial richness was higher than that reported in humans, but lower than that reported in either cattle feces or soil. Bacterial classified sequences were assigned to 16 phyla, of which 10 were present in all samples. The largest number of reads belonged to Firmicutes (43.7% of total bacterial sequences), Verrucomicrobia (4.1%), Proteobacteria (3.8%), and Bacteroidetes (3.7%). The less abundant Actinobacteria, Cyanobacteria, and TM7 phyla presented here have not been previously described in the gut contents or feces of horses. Unclassified sequences represented 38.1% of total bacterial sequences; therefore, the equine fecal microbiome diversity is likely greater than that described. This is the first study to characterize the fecal bacterial community in horses by the use of 16S rRNA gene amplicon pyrosequencing, expanding our knowledge of the fecal microbiota of forage-fed horses.  相似文献   

5.
Distinct partitioning has been observed in the composition and diversity of bacterial communities inhabiting the surface and overlying seawater of three coral species infected with black band disease (BBD) on the southern Caribbean island of Cura?ao, Netherlands Antilles. PCR amplification and sequencing of bacterial 16S rRNA genes (rDNA) with universally conserved primers have identified over 524 unique bacterial sequences affiliated with 12 bacterial divisions. The molecular sequences exhibited less than 5% similarity in bacterial community composition between seawater and the healthy, black band diseased, and dead coral surfaces. The BBD bacterial mat rapidly migrates across and kills the coral tissue. Clone libraries constructed from the BBD mat were comprised of eight bacterial divisions and 13% unknowns. Several sequences representing bacteria previously found in other marine and terrestrial organisms (including humans) were isolated from the infected coral surfaces, including Clostridium spp., Arcobacter spp., Campylobacter spp., Cytophaga fermentans, Cytophaga columnaris, and Trichodesmium tenue.  相似文献   

6.
Nitrifying bacterial community structures of suspended and attached biomasses in a full-scale integrated fixed-film activated sludge process were investigated by analyzing 16S rRNA gene sequences obtained from pyrosequencing. The suspended biomass had a higher number of ammoniaoxidizing bacterial sequences (0.8% of total sequences) than the attached biomass (0.07%), although most of the sequences were within the Nitrosomonas oligotropha lineage in both biomasses. Nitrospira-like nitrite-oxidizing bacterial sequences were retrieved in the suspended biomass (0.06%), not in the attached biomass, whereas the existence of Nitrobacter-like sequences was not evident. The suspended biomass had higher nitrification activity (1.13 mg N/TSS/h) than the attached biomass (0.07 mg N/TSS/h). Overall, the results made it possible to conclude the importance of the suspended biomass, rather than the attached biomass, in nitrification in the wastewater treatment process studied.  相似文献   

7.
S Sun  R Ke  D Hughes  M Nilsson  DI Andersson 《PloS one》2012,7(8):e42639
Genome rearrangements have important effects on bacterial phenotypes and influence the evolution of bacterial genomes. Conventional strategies for characterizing rearrangements in bacterial genomes rely on comparisons of sequenced genomes from related species. However, the spectra of spontaneous rearrangements in supposedly homogenous and clonal bacterial populations are still poorly characterized. Here we used 454 pyrosequencing technology and a 'split mapping' computational method to identify unique junction sequences caused by spontaneous genome rearrangements in chemostat cultures of Salmonella enterica Var. Typhimurium LT2. We confirmed 22 unique junction sequences with a junction microhomology more than 10 bp and this led to an estimation of 51 true junction sequences, of which 28, 12 and 11 were likely to be formed by deletion, duplication and inversion events, respectively. All experimentally confirmed rearrangements had short inverted (inversions) or direct (deletions and duplications) homologous repeat sequences at the endpoints. This study demonstrates the feasibility of genome wide characterization of spontaneous genome rearrangements in bacteria and the very high steady-state frequency (20-40%) of rearrangements in bacterial populations.  相似文献   

8.
Effect of antibiotics on the bacterial population of the rabbit caecum   总被引:1,自引:0,他引:1  
The effect feeding antibiotics has on the bacterial population of the rabbit caecum was investigated. No changes in total volatile fatty acid production or total bacterial counts were observed compared with nonantibiotic treated controls. However, treatment with chlortetracycline resulted in an increase of propionate at the apparent cost of butyrate (P<0.05). Denaturing gradient gel electrophoresis analysis indicated that the two antibiotics that inhibit protein synthesis (chlortetracycline and tiamulin) exerted the most similar changes on the bacterial population structure, decreasing the diversity of the profiles. Sequence analysis of DNA from excised denaturing gradient gel electrophoresis bands was carried out. The majority of the sequences observed were most similar to bacterial sequences previously described in other gut environments, with 11% being most similar to those previously reported from the rabbit, and 95% of the sequences having 95% or greater identity to sequences already in GenBank.  相似文献   

9.
Delbès C  Godon JJ  Moletta R 《Anaerobe》1998,4(6):267-275
A bacterial culture-based inventory with 16S rDNA identification of the isolates was carried out on an anaerobic digestor microbial ecosystem to compare to the 16S rDNA sequences directly retrieved from the ecosystem by a molecular inventory previously made in our laboratory. Twenty OTUs (Operational Taxonomic Units) belonging to five of the major bacterial groups were identified from 338 isolated colonies. The sequences of 13 of the 20 OTUs were not closely related to any hitherto published sequences (less than 96% sequence identity). Six OTUs out of 20 were found to have sequences similar to sequences of the molecular inventory. Despite the biases expected to be associated with the molecular and culture-based methods, the distribution of the isolated OTUs into the different bacterial phyla was similar to that of the molecular OTUs.  相似文献   

10.
A meta-analysis of the microbial diversity observed in anaerobic digesters   总被引:2,自引:0,他引:2  
In this study, the collective microbial diversity in anaerobic digesters was examined using a meta-analysis approach. All 16S rRNA gene sequences recovered from anaerobic digesters available in public databases were retrieved and subjected to phylogenetic and statistical analyses. As of May 2010, 16,519 bacterial and 2869 archaeal sequences were found in GenBank. The bacterial sequences were assigned to 5926 operational taxonomic units (OTUs, based on ?97% sequence identity) representing 28 known bacterial phyla, with Proteobacteria (1590 OTUs), Firmicutes (1352 OTUs), Bacteroidetes (705 OTUs), and Chloroflexi (693 OTUs) being predominant. Archaeal sequences were assigned to 296 OTUs, primarily Methanosaeta and the uncharacterized WSA2 group. Nearly 60% of all sequences could not be classified to any established genus. Rarefaction analysis indicates that approximately 60% of bacterial and 90% of archaeal diversity in anaerobic digesters has been sampled. This analysis of the global bacterial and archaeal diversity in AD systems can guide future studies to further examine the microbial diversity involved in AD and development of comprehensive analytical tools.  相似文献   

11.
Bacterial diversity in alkaline (pH 10.4) and permanently cold (4°C) ikaite tufa columns from the Ikka Fjord, SW Greenland, was investigated using growth characterization of cultured bacterial isolates with Terminal-restriction fragment length polymorphism (T-RFLP) and sequence analysis of bacterial 16S rRNA gene fragments. More than 200 bacterial isolates were characterized with respect to pH and temperature tolerance, and it was shown that the majority were cold-active alkaliphiles. T-RFLP analysis revealed distinct bacterial communities in different fractions of three ikaite columns, and, along with sequence analysis, it showed the presence of rich and diverse bacterial communities. Rarefaction analysis showed that the 109 sequenced clones in the 16S rRNA gene library represented between 25 and 65% of the predicted species richness in the three ikaite columns investigated. Phylogenetic analysis of the 16S rRNA gene sequences revealed many sequences with similarity to alkaliphilic or psychrophilic bacteria, and showed that 33% of the cloned sequences and 33% of the cultured bacteria showed less than 97% sequence identity to known sequences in databases, and may therefore represent yet unknown species.  相似文献   

12.
Schmid M  Roth JR 《Genetics》1980,94(1):15-29
Generalized transducing fragments that have redundant sequences in direct order can circularize during transduction events. The length of the required redundant sequences can be at least as short as IS10 (1.4 kb) (Kleckner 1977). The circular transduced fragment is able to recombine with homologous sequences in the chromosome. Circularization and insertion of transduced fragments allow addition of segments to the bacterial chromosome rather than replacement of recipient segments as in a normal transductional cross. It also provides a method for translocation of bacterial genes to a variety of specific sites on the chromosome in either orientation. The significance of these events to bacterial evolution is discussed.  相似文献   

13.
To examine the bacterial community structure in the Fildes Peninsula, King George Island, Antarctica, we examined the bacterial diversity and community composition of samples collected from lacustrine sediment, marine sediment, penguin ornithogenic sediments, and soils using culture-dependent and culture-independent methods. The 70 strains fell into five groups: Actinobacteria, Bacteroidetes, Firmicutes, Gammaproteobacteria, and Betaproteobacteria. Bacterial diversity at the phylum level detected in Denaturing Gradient Gel Electrophoresis (DGGE) profiles comprised Proteobacteria (including the subphyla Alpha-, Beta-, Gamma-, Deltaproteobacteria), Bacteroidetes, Firmicutes, Chlorobi, and Deinococcus-Thermus. Gammaproteobacteria was identified to be the dominant bacterial subphylum by cultivation and DGGE method. By cluster analysis, the overall structure and composition of bacterial communities in the soil and lacustrine sediment were similar to one another but significantly different from bacterial communities in penguin ornithogenic sediment and marine sediment, which were similar to one another. The majority of 16S rDNA sequences from cultured bacteria were closely related to sequences found in cold environments. In contrast, a minority of 16S rDNA sequences from the DGGE approach were closely related to sequences found in cold environments.  相似文献   

14.
The giant barrel sponges Xestospongia muta and Xestospongia testudinaria are ubiquitous in tropical reefs of the Atlantic and Pacific Oceans, respectively. They are key species in their respective environments and are hosts to diverse assemblages of bacteria. These two closely related sponges from different oceans provide a unique opportunity to examine the evolution of sponge-associated bacterial communities. Mitochondrial cytochrome oxidase subunit I gene sequences from X. muta and X. testudinaria showed little divergence between the two species. A detailed analysis of the bacterial communities associated with these sponges, comprising over 900 full-length 16S rRNA gene sequences, revealed remarkable similarity in the bacterial communities of the two species. Both sponge-associated communities include sequences found only in the two Xestospongia species, as well as sequences found also in other sponge species and are dominated by three bacterial groups, Chloroflexi, Acidobacteria, and Actinobacteria. While these groups consistently dominate the bacterial communities revealed by 16S rRNA gene-based analysis of sponge-associated bacteria, the depth of sequencing undertaken in this study revealed clades of bacteria specifically associated with each of the two Xestospongia species, and also with the genus Xestospongia, that have not been found associated with other sponge species or other ecosystems. This study, comparing the bacterial communities associated with closely related but geographically distant sponge hosts, gives new insight into the intimate relationships between marine sponges and some of their bacterial symbionts.  相似文献   

15.
In this study, we report on first 16S rRNA gene sequences from highly saline brine sediments taken at a depth of 1,515 m in the Kebrit Deep, northern Red Sea. Microbial DNA extracted directly from the sediments was subjected to PCR amplification with primers specific for bacterial and archaeal 16S rRNA gene sequences. The PCR products were cloned, and a total of 11 (6 bacterial and 5 archaeal) clone types were determined by restriction endonuclease digestion. Phylogenetic analysis revealed that most of the cloned sequences were unique, showing no close association with sequences of cultivated organisms or sequences derived from environmental samples. The bacterial clone sequences form a novel phylogenetic lineage (KB1 group) that branches between the Aquificales and the Thermotogales. The archaeal clone sequences group within the Euryarchaeota. Some of the sequences cluster with the group II and group III uncultivated archaea sequence clones, while two clone groups form separate branches. Our results suggest that hitherto unknown archaea and bacteria may thrive in highly saline brines of the Red Sea under extreme environmental conditions. Received: 5 February 1999 / Accepted: 14 July 1999  相似文献   

16.
Bacterial interspersed mosaic elements (or BIMEs) are repeated sequences identified in several enterobacterial genomes. BIMEs are a mosaic combination of small sequence motifs. It has been estimated that 500 BIMEs are scattered over the bacterial genome. BIMEs have been identified in several enterobacteria: Escherichia coli, Salmonella typhimurium, Klebsiella sp. and relatives of these bacteria. BIME function is not known, but their interactions with specific proteins (DNA polymerase I, gyrase and integration host factor) suggest that they could be involved in functional organization of bacterial chromosomes. Four other families of interspersed repetitive sequences have been shown to exist in a variety of bacterial genomes. Like BIMEs, these sequences are rather small, contain a region of dyad symmetry, and are found in extragenic locations. Unlike BIMEs, IRU (or ERIC), box C sequences and RSA sequences occur in enterobacteria but also in other Gram-negative bacteria.  相似文献   

17.
Bacterial endosymbionts have been detected in some groups of plant‐parasitic nematodes, but few cases have been reported compared to other groups in the phylum Nematoda, such as animal‐parasitic or free‐living nematodes. This study was performed on a wide variety of plant‐parasitic nematode families and species from different host plants and nematode populations. A total of 124 nematode populations (previously identified morphologically and molecularly) were screened for the presence of potential bacterial endosymbionts using the partial 16S rRNA gene and fluorescence in situ hybridization (FISH) and confocal microscopy. Potential bacterial endosymbionts were only detected in nematode species belonging to the genus Xiphinema and specifically in the X. americanum group. Fifty‐seven partial 16S rRNA sequences were obtained from bacterial endosymbionts in this study. One group of sequences was closely related to the genus ‘Candidatus Xiphinematobacter’ (19 bacterial endosymbiont sequences were associated with seven nematode host species, including two that have already been described and three unknown bacterial endosymbionts). The second bacterial endosymbiont group (38 bacterial endosymbiont sequences associated with six nematode species) was related to the family Burkholderiaceae, which includes fungal and soil–plant bacterial endosymbionts. These endosymbionts were reported for the first time in the phylum Nematoda. Our findings suggest that there is a highly specific symbiotic relationship between nematode host and bacterial endosymbionts. Overall, these results were corroborated by a phylogeny of nematode host and bacterial endosymbionts that suggested that there was a high degree of phylogenetic congruence and long‐term evolutionary persistence between hosts and endosymbionts.  相似文献   

18.
Functional constraints to modifications in triterpene cyclase amino acid sequences make them good candidates for evolutionary studies on the phylogenetic relatedness of these enzymes in prokaryotes as well as in eukaryotes. In this study, we used a set of identified triterpene cyclases, a group of mainly bacterial squalene cyclases and a group of predominantly eukaryotic oxidosqualene cyclases, as seed sequences to identify 5288 putative triterpene cyclase homologues in publicly available databases. The Cluster Analysis of Sequences software was used to detect groups of sequences with increased pairwise sequence similarity. The sequences fall into two main clusters, a bacterial and a eukaryotic. The conserved, informative regions of a multiple sequence alignment of the family were used to construct a neighbour-joining phylogenetic tree using the AsaturA and maximum likelihood phylogenetic tree using the PhyML software. Both analyses showed that most of the triterpene cyclase sequences were similarly grouped to the accepted taxonomic relationships of the organism the sequences originated from, supporting the idea of vertical transfer of cyclase genes from parent to offspring as the main evolutionary driving force in this protein family. However, a small group of sequences from three bacterial species ( Stigmatella , Gemmata and Methylococcus ) grouped with an otherwise purely eukaryotic cluster of oxidosqualene cyclases, while a small group of sequences from seven fungal species and a sequence from the fern Adiantum grouped consistently with a cluster of otherwise purely bacterial squalene cyclases. This suggests that lateral gene transfer may have taken place, entailing a transfer of oxidosqualene cyclases from eukaryotes to bacteria and a transfer of squalene cyclase from bacteria to an ancestor of the group of Pezizomycotina fungi.  相似文献   

19.
Denaturing gradient gel electrophoresis (DGGE) of PCR-amplified 16S rDNA was used to characterise and compare bacterial communities associated with scallop larvae (Pecten maximus), in different production units in a shellfish hatchery. Water and larvae samples were collected from three different aquaculture systems; stagnant, flow-through and a flow- through system with seawater treated with ozone. Samples were also collected from different algal cultures, inlet tanks and water pipes leading to the different aquaculture systems. Clear differences were seen between the bacterial community associated with the larvae and in the water from the different aquaculture systems. However, there were high similarities in the community composition between different water samples and between larvae samples collected at different time periods, indicating a high stability in the bacterial communities. Fifty three percent of the sequences from these samples were similar to 16S rRNA gene sequences of members of the gamma-subclass of the Proteobacteria. The different algal cultures had different bacterial communities, however 73 percent of the sequences were similar to 16S rRNA gene sequences of members of the alpha-subclass of the Proteobacteria. Differences in the DGGE profiles were also seen between the samples taken from the inlet tanks and water pipes, indicating a change in the bacterial community composition as the water passed through the pipes. To our knowledge this is the first study investigating bacterial communities associated with Great Scallop larvae in different aquaculture systems including noncultured components.  相似文献   

20.
Phylogenetic relationships among prokaryotic and eukaryotic catalases   总被引:13,自引:1,他引:12  
Seventy-four catalase protein sequences, including 29 bacterial, 8 fungal, 7 animal, and 30 plant sequences, were compiled, and 70 were used for phylogenetic reconstruction. The core of the resulting tree revealed unique, separate groups of plant and animal catalases, two groups of fungal catalases, and three groups of bacterial catalases. The only overlap of kingdoms occurred within one branch and involved fungal and bacterial large-subunit enzymes. The other fungal branch was closely linked to the group of animal enzymes. Group I bacterial catalases were more closely related to the plant enzymes and contained such diverse taxa as the Gram-positive Listeria seeligeri, Deinocococcus radiodurans, and gamma-proteobacteria. Group III bacterial sequences were more closely related to fungal and animal sequences and included enzymes from a broad range of bacteria including high- and low-GC Gram positives, proteobacteria, and a bacteroides species. Group II was composed of large-subunit catalases from diverse sources including Gram positives (low-GC Bacilli and high-GC Mycobacteria), proteobacteria, and species of the filamentous fungus Aspergillus. These data can be interpreted in terms of two gene duplication events that produced a minimum of three catalase gene family members that subsequently evolved in response to environmental demands. Horizontal gene transfer may have been responsible for the group II mixture of bacterial and fungal large-subunit catalases.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号