首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Kuriyama H 《Plant physiology》1999,121(3):763-774
A tracheary element (TE) is a typical example of a cell type that undergoes programmed cell death in the developmental processes of vascular plants. The loss of the selective permeability of the tonoplast, which corresponds to tonoplast disintegration, occurred after the cells commenced secondary wall thickening and played a pivotal role in the programmed cell death of TEs in a zinnia (Zinnia elegans L.) cell culture. A search for events specifically associated with the TE vacuole provided an important clue to the understanding of the cell death mechanism. The transport of fluorescein, a fluorescent organic anion, across the tonoplast declined drastically in differentiating TEs. The capacity of the vacuole to accumulate the probe was also impaired. Treatment with probenecid, an inhibitor of organic anion transport, caused rapid cell death of TEs and led to the ultimate disruption of the vacuole even in other types of cultured cells. These changes in vacuolar properties during TE development were suppressed by cycloheximide. Specific mRNA accumulation in cells cultured in a TE differentiation-inductive condition was abolished by probenecid. These results suggest that a change in vacuolar membrane permeability promotes programmed cell death in TEs.  相似文献   

3.
4.
Motose H  Fukuda H  Sugiyama M 《Planta》2001,213(1):121-131
The transdifferentiation of isolated mesophyll cells of zinnia (Zinnia elegans L.) into tracheary elements (TEs) has been well studied as a model of plant cell differentiation. In order to investigate intercellular communication in this phenomenon, two types of culture method were developed, in which mesophyll cells were embedded in a thin sheet of agarose gel and cultured on solid medium, or embedded in microbeads of agarose gel and cultured in liquid medium. A statistical analysis of the two-dimensional distribution of TEs in the thin-sheet cultures demonstrated their aggregation. In the microbead cultures, the frequency of TE differentiation was shown to depend on the local cell density (the cell density in each microbead): TE differentiation required local cell densities of more than 105 cells ml−1. These results suggest that TE differentiation involves cell-cell communication mediated by a locally acting diffusible factor. This presumptive factor was characterized by applying a modified version of the sheet culture, which used two sheets of different cell densities, a low-density sheet and a high-density sheet. Differentiation of TEs in the former could be induced only by bringing it into contact with the latter. Insertion of a 25-kDa-cutoff membrane between the high-density and low-density sheets severely suppressed such induction of TEs in the low-density sheet while a 300-kDa-cutoff membrane suppressed induction only slightly. Insertion of agarose sheets containing immobilized pronase E or trypsin also interfered with the induction of TEs in the low-density sheets. Thus, a proteinaceous macromolecule of 25–300 kDa in molecular weight was assumed to mediate the local intercellular communication required for TE differentiation. This substance was designated “xylogen” with reference to its xylogenic activity. The time of requirement for xylogen during TE differentiation was assessed by experiments in which cells in the low-density sheet were separated from xylogen produced in the high-density sheet at various times by insertion of a 25-kDa-cutoff membrane between the two sheets, and was estimated to be from the 36th hour to the 60th hour of culture (12–36 h before visible thickening of secondary cell walls of TEs). Received: 13 July 2000 / Accepted: 4 October 2000  相似文献   

5.
Tracheary element (TE) differentiation is a typical example of programmed cell death (PCD) in higher plants, and maturation of TEs is completed by degradation of all cell contents. However, lignification of TEs progresses even after PCD. We investigated how and whence monolignols are supplied to TEs which have undergone PCD during differentiation of isolated Zinnia mesophyll cells into TEs. Higher densities of cell culture induced greater lignification of TEs. Whereas the continuous exchanging of culture medium suppressed lignification of TEs, further addition of coniferyl alcohol into the exchanging medium reduced the suppression of lignification. Analysis of the culture medium by HPLC and GC-MS showed that coniferyl alcohol, coniferaldehyde, and sinapyl alcohol accumulated in TE inductive culture. The concentration of coniferyl alcohol peaked at the beginning of secondary wall thickening, decreased rapidly during secondary wall thickening, then increased again. These results indicated that lignification on TEs progresses by supply of monolignols from not only TEs themselves but also surrounding xylem parenchyma-like cells through medium in vitro.  相似文献   

6.
7.
The effects of medium pH on cell expansion and tracheary element (TE) differentiation were investigated in differentiating mesophyll suspension cultures of Zinnia elegans L. In unbuffered cultures initially adjusted to pH 5.5, the medium pH fluctuated reproducibly, decreasing about 1 unit prior to the onset of TE differentiation and then increasing when the initiation of new Tes was complete. Elimination of large pH fluctuations by buffering the culture medium with 20 mM 2-(N-morpholino)ethanesulfonic acid altered both cell expansion and TE differentiation, whereas altering the starting pH of unbuffered culture medium had no effect on either process. Cell expansion in buffered cultures was pH dependent with an optimum of 5.5 to 6.0. The direction of cell expansion was also pH dependent in buffered cultures. Cells elongated at pH 5.5 to 6.0, whereas isodiametric cell expansion was predominant at pH 6.5 to 7.0. The onset of TE differentiation was delayed when the pH was buffered higher or lower than 5.0. However, TEs eventually appeared in cultures buffered at pH 6.5 to 7.0, indicating that a decrease in pH to 5.0 is not necessary for differentiation. Very large TEs with secondary cell wall thickenings resembling metaxylem differentiated in cultures buffered at pH 5.5 to 6.0, which also showed the greatest cell expansion. The correlation between cell expansion and delayed differentiation of large, metaxylem-like TEs may indicate a link between the regulatory mechanisms controlling cell expansion and TE differentiation.  相似文献   

8.
Xylem vessels are cells that develop a specifically ornamented secondary cell wall to ensure their vascular function, conferring both structural strength and impermeability. Further plasticity is given to these vascular cells by a range of different patterns described by their secondary cell walls that—as for the growth of all plant organs—are developmentally regulated. Microtubules and their associated proteins, named MAPs, are essential to define the shape, the orientation, the position and the overall pattern of these secondary cell walls. Key actors in this process are the land-plant specific MAP70 proteins which not only allow the secondary cell wall to be positioned at the cell cortex but also determine the overall pattern described by xylem vessel secondary cell walls.Key words: xylem/wood vessels, tracheary elements, secondary cell wall, cell wall patterning, microtubules, microtubule-associated proteins, MAP70Xylem formation has been one of the key steps of plant evolution. These physically strong tube cells allowed plants to colonize land by reinforcing their upright position against gravity and resisting desiccation by permitting water conduction throughout the plant body. This double role is fulfilled by specific conducting wood cells—the tracheary elements (TEs). These cells represent the cellular units of the adjustable plant vasculature, which relies on the three structural characteristics of TEs: (1) these cells develop a secondary cell wall to resist pressure exerted by the sap they will conducted, (2) these cells undergo programmed cell death (PCD) to hollow out their entire cytoplasmic content to form a conduit for the sap and (3) these cells will undergo a terminal perforation at their basal end (with respect to the corresponding meristem) to form a complete functional vascular cylinder which will connect with the underlying vascular vessels once terminally differentiated.1,2 TEs are further characterized by a diversity of organizational pattern described by their secondary cell wall, which can be annular or spiral (referred to as protoxylem-type ornamentations) reticulate or pitted (referred to as metaxylem-type ornamentations).3,4 These differently ornamented TEs are developmentally regulated and for protoxylemtype TEs appear during the development of early primary tissues (annular TEs are mostly observed in developing embryos) while metaxylem-type TEs appear in the later development of primary and secondary tissues (they represent the TEs present in wood). Annular and spiral TEs are first formed in organs undergoing primary growth and are considered to be “extendable” (their pattern in rings and spirals does not oppose further extension of the TE cell) during the growth of this organ. Once the growing organ has attained a certain size these TEs will be crushed by the surrounding tissue whilst the more heavily reinforced reticulate and pitted TEs will form to insure the vascular flow and strengthen the entire organ. In short, the modularity and plasticity of this plant vascular system is directly dependant on the differentiation and the type of cell wall ornamentation of its constituent TEs. The establishment of such regular patterning of secondary cell walls has been attributed to the underlying cortical microtubule array that predefines the cell wall depositions (reviewed in ref. 2). Pharmacological modulation of microtubule properties in both whole plants and in vitro TE differentiating systems leads to severe defects in the patterning, orientation, smoothness and deposition of TE secondary cell walls (reviewed in ref. 2).  相似文献   

9.
Uniconazole [S-3307; (E)-l-(4-chlorophenyl)-4,4-dimethyl-2-(l,2,4-triazol-l-yl)-l-penten-3-ol],a synthetic plant-growth retardant, inhibited the differentiationof isolated mesophyll cells of Zinnia elegans L. into trachearyelements (TEs) but had no effect on cell division when it wasadded to the culture medium at a concentration of 3.4 µM.In the presence of uniconazole, none of the cytological eventscharacteristic of the processes of TE differentiation, suchas aggregation of actin filaments, bundling of microtubulesor localized thickening and lignification of secondary walls,was observed. Uniconazole was effective when it was added tothe medium within 36 h after the start of culture. Brassinosteroids(0.2 nM brassinolide or 2 µM homobrassinolide), but notgibberellin A3, counteracted the inhibitory effect of uniconazoleon TE differentiation. Brassinosteroids were most effectivewhen they were added to cultures between 24 and 30 h after thestart of culture. Exogenously applied brassinosteroids promotedTE differentiation. It is suggested that the synthesis of brassinosteroidsis essential for the differentiation of the cells into TEs andthat uniconazole inhibits this differentiation through its inhibitoryeffect on the biosynthesis of brassinosteroids. (Received May 9, 1991; )  相似文献   

10.
The zinnia (Zinnia elegans) mesophyll cell culture tracheary element (TE) system was used to study proteinases active during developmentally programmed cell death. Substrate-impregnated gels and single-cell assays revealed high levels of proteinase activity in differentiating TEs compared with undifferentiated cultured cells and expanding leaves. Three proteinases (145, 28, and 24 kD) were exclusive to differentiating TEs. A fourth proteinase (59 kD), although detected in extracts from all tissues examined, was most active in differentiating TEs. The 28- and 24-kD proteinases were inhibited by thiol proteinase inhibitors, leupeptin, and N-[N-(L-3-trans-carboxirane-2-carbonyl)-L-leucyl]-agmatine (E-64). The 145- and 59-kD proteinases were inhibited by the serine proteinase inhibitor phenylmethylsulfonyl fluoride (PMSF). Extracts from the TE cultures contained sodium dodecyl sulfate-stimulated proteolytic activity not detected in control cultures. Sodium dodecyl sulfate-stimulated proteolysis was inhibited by leupeptin or E-64, but not by PMSF. Other tissues, sucrose-starved cells and cotyledons, that contain high levels of proteolytic activity did not contain TE-specific proteinases, but did contain higher levels of E-64-sensitive activities migrating as 36- to 31-kD enzymes and as a PMSF-sensitive 66-kD proteinase.  相似文献   

11.
Dahiya P  Findlay K  Roberts K  McCann MC 《Planta》2006,223(6):1281-1291
The vascular cylinder of the mature stem of Zinnia elegans cv Envy contains two anatomically distinct sets of vascular bundles, stem bundles and leaf-trace bundles. We isolated a full-length cDNA of ZeFLA11, a fasciclin-domain-containing gene, from a zinnia cDNA library derived from in vitro cultures of mesophyll cells induced to form tracheary elements. Using RNA in situ hybridization, we show that ZeFLA11 is expressed in the differentiating xylem vessels with reticulate type wall thickenings and adjacent parenchyma cells of zinnia stem bundles, but not in the leaf-trace bundles that deposit spiral thickenings. Our results suggest a function for this cell-surface GPI-anchored glycoprotein in secondary wall deposition during differentiation of metaxylem tissue with reticulate vessels.  相似文献   

12.
In maturation process of tracheary element (TE) differentiation, many hydrolases are activated to execute programmed cell death of TEs. Such hydrolases are released from maturing TEs into extracellular space. The release of hydrolases should be harmful to surrounding cells. The TED4 protein, a tentative plant non-specific lipid transfer protein that is expressed preferentially in TE-induced culture of zinnia (Zinnia elegans L.), is secreted into the apoplastic space prior to and associated with morphological changes of TEs. Our studies on the interrelationship between the TED4 protein and proteolytic activities using an in vitro TE differentiation system of zinnia revealed the following facts. (1) Active proteasome is released into medium at maturation stage of TE differentiation. (2) The TED4 protein forms a complex with proteasome in culture medium. (3) The TED4 protein inhibits proteasome activity in the medium and crude extracts of zinnia cells. (4) The depletion of the TED4 protein from culture medium results in an increase in mortality of other living cells. These results strongly suggest that the secreted TED4 protein acts as an inhibitor of proteasome to protect other cells from undesirable injury due to proteolytic activities exudated from dying TEs.  相似文献   

13.
Changes in the enzymatic activity of cinnamyl alcohol dehydrogenase (CAD) and in the expression of a gene for CAD during tracheary element (TE) differentiation were investigated in cultures of single cells isolated from the mesophyll of zinnia (Zinnia elegans). In cultures in which TE differentiation was induced (TE-inductive cultures), CAD activity increased from h 36 after the start of culture (12 h before the start of thickening of the secondary cell wall) and peaked at h 72, when lignin was actively being deposited. In control cultures in which TE differentiation was not induced, CAD activity remained at a very low level for 5 d. Some isoforms of CAD were detected only in the TE-inductive cultures by native gel electrophoresis and subsequent staining for CAD activity. A cDNA clone for CAD, ZCAD1, was isolated from Z. elegans using a cDNA clone for CAD from Aralia cordata as the probe. RNA gel-blot analysis revealed that in the TE-inductive cultures the level of ZCAD1 mRNA increased from h 36 and peaked at h 48 to 60. No such increases were observed in control cultures. These results indicated that both the gene expression and the activity of CAD are strictly regulated, in association with lignification, during TE differentiation in Z. elegans.  相似文献   

14.
Nakashima J  Endo S  Fukuda H 《Planta》2004,218(5):729-739
Polygalacturonase (PG) is a cell wall-associated protein that degrades pectin. A ZePG1 cDNA encoding a putative PG was isolated from Zinnia elegens L. and a rabbit antibody specific to the ZePG1 protein was generated. The level of the ZePG1 protein was up-regulated when tracheary element differentiation was initiated. Using gold-labeled secondary antibodies for light and electron microscopy, ZePG1 protein was localized in cultured Zinnia cells. This protein was preferentially distributed on tracheary elements (TEs). At the subcellular level, the protein was localized on secondary wall thickenings, primary walls, Golgi bodies and vesicles. Thus, the putative role of the ZePG1 protein might be the degradation of pectic substances before lignification. Some non-TE cells also accumulated ZePG1 protein on primary walls, Golgi bodies and vesicles. The accumulation of ZePG1 protein on primary walls seems to be at the elongating tips of non-TE cells. In plants, ZePG1 protein was localized on the secondary wall thickenings of differentiating TEs and phloem regions. These results suggest that the expression of the ZePG1 protein is highly regulated both spatially and temporally during in vitro and in situ TE differentiation.Abbreviations GST Glutathione-S-transferase - PATAg Periodic acid–thiocarbohydrazide–silver proteinate - PG Polygalacturonase - TE Tracheary element  相似文献   

15.
Mechanically isolated mesophyll cells of Zinnia elegans differentiate into tracheary elements (TEs) when cultured in a medium containing adequate auxin and cytokinin. Differentiation in this culture system is relatively synchronous, rapid (occuring within 3 days of cell isolation) and efficient (with up to 65% of the mesophyll cells differentiating into TEs), and does not require prior mitosis. The Zinnia system has been used to investigate (a) cytological and ultrastructural changes occurring during TE differentiation, such as the reorganization of microtubules controlling secondary wall deposition, (b) the influences of calcium and of various plant hormones and antihormones on TE differentiation, and (c) biochemical changes during differentiation, including those occurring during secondary wall deposition, lignification and autolysis. This review summarizes experiments in which the Zinnia system has served as a model for the study of TE differentiation.  相似文献   

16.
Oda Y  Mimura T  Hasezawa S 《Plant physiology》2005,137(3):1027-1036
Cortical microtubules participate in the deposition of patterned secondary walls in tracheary element differentiation. In this study, we established a system to induce the differentiation of tracheary elements using a transgenic Arabidopsis (Arabidopsis thaliana) cell suspension stably expressing a green fluorescent protein-tubulin fusion protein. Approximately 30% of the cells differentiated into tracheary elements 96 h after culture in auxin-free media containing 1 mum brassinolide. With this differentiation system, we have been able to time-sequentially elucidate microtubule arrangement during secondary wall thickening. The development of secondary walls could be followed in living cells by staining with fluorescein-conjugated wheat germ agglutinin, and the three-dimensional structures of the secondary walls could be simultaneously analyzed. A single microtubule bundle first appeared beneath the narrow secondary wall and then developed into two separate bundles locating along both sides of the developing secondary wall. Microtubule inhibitors affected secondary wall thickening, suggesting that the pair of microtubule bundles adjacent to the secondary wall played a crucial role in the regulation of secondary wall development.  相似文献   

17.
J. Cronshaw 《Planta》1966,72(1):78-90
Summary Sterile pith cultures of Nicotiana tabacum have been induced to form localized regions of differentiating tracheids. These localized regions have been examined by phase, fluorescence, and electron microscopy, and polarization optics. Fixation for electron microscopy was with glutaraldehyde-osmium. The differentiating tracheids develop characteristic thick cell walls which are eventually lignified. The lignifications appear to be uniform throughout the secondary wall and little or no lignin appears to be deposited in the primary walls or intercellular layer. At all stages of secondary wall deposition, the peripheral cytoplasm contains a system of microtubules which form a pattern similar to that of the developing thickenings. Within this system the microtubules are oriented, the direction of orientation mirroring that of the fibrils in the most recently deposited parts of the wall. The observations support the view that the microtubules are somehow involved in microfibril orientation. The microtubules appear to be attached to the plasma membrane which has a triple layered structure. The two electron dense layers of the plasma membrane have a particulate structure. In the differentiating tracheids at regions where secondary wall thickening has not yet been deposited numerous invaginations of the plasma membrane are observed which contain loosely organized fibrillar material. It is suggested that these are areas of localized activity of the plasma membrane and that the enzymes concerned with the final organization of the cellulose microfibrils are situated at the surface of the plasma membrane. Dictyosomes in the differentiation cells give rise to vesicles which contain fibrous material and the contents are incorporated into the cell wall. Numerous profiles characteristic of plasmodesmata are evident in sections of the secondary thickenings.Part of this work was carried out at the Osborne Memorial Laboratories, Yale University.  相似文献   

18.
The Zinnia mesophyll cell system consists of isolated leaf mesophyll cells in culture that can be induced, by auxin and cytokinin, to transdifferentiate semi-synchronously into tracheary elements (TEs). This system has been used to establish the precise time point at which the TE cell fate becomes determined, and then changes have been looked for in cell-wall composition and architecture that are associated with the establishment of competence, determination, and differentiation with the transition from primary to secondary cell wall formation. At very early stages in this time course, changes in the repertoire of proteins and polysaccharides both in the cell wall and secreted into the culture medium were found. Changes in the secretion of pectic polysaccharides, xyloglucans and arabinogalactan proteins (AGPs) have been detected using the monoclonal antibodies JIM 7, CCRC-M1 and JIM 13, that recognize these three classes of cell-wall molecule, respectively. Twenty-four hours before secondary thickenings are visible, an AGP is present in the primary walls of a subpopulation of cells, and is secreted into the culture medium. This molecule is present in the secondary thickenings of mature TEs but not in their surrounding primary walls. Methyl-esterified pectic polysaccharides are present in all cell walls and are secreted into the culture medium throughout the time course of differentiation, though at an increased rate in inductive medium. However, sugar and linkage analysis of culture media shows that a relatively unbranched rhamnogalacturonan is enriched in inductive medium around the time of determination and increases rapidly in concentration. The amount of fucosylated xyloglucan in cell walls increases during the time course, but appears in inductive medium 24 h earlier than in control medium and may have a subtly different structure. The fucose-containing epitope on the xyloglucan disappears abruptly and entirely from inductive medium 6 h before any secondary thickenings are visible in the cells. The disappearance of the epitope is correlated with secretion of several hydrolytic enzyme activities. In Zinnia leaves, the mesophyll cell walls contain neither the fucosylated xyloglucan nor the AGP, although methylesterified pectin is present. All three epitopes are expressed in the vascular bundles, and the AGP is specifically localized in the xylem cells. Fucosylated xyloglucan is also present in the epidermal tissue, and the AGP is present in guard cells. The dynamic behaviour of these specific cell-wall molecules is tightly correlated with differentiation events in vitro, and can be clearly distinguished from the production of new wall material found in expanding and elongating cells. The precise timing of the appearance and disappearance of these proteins and polysaccharides compared with the point of cell-fate determination provides us with a series of cell-surface markers for cell states at very early times in the transdifferentiation pathway.  相似文献   

19.
20.
Z H Ye 《Plant physiology》1997,115(4):1341-1350
Caffeoyl coenzyme A 3-O-methyltransferase (CCoAOMT) was previously shown to be associated with lignification in both in vitro tracheary elements (TEs) and organs of zinnia (Zinnia elegans). However, it is not known whether this is a general pattern in dicot plants. To address this question, polyclonal antibodies against zinnia recombinant CCoAOMT fusion protein were raiseed and used for immunolocalization in several dicot plants. The antibodies predominantly recognized a protein band with a molecular mass of 28 kD on western analysis of tissue extracts from zinnia, forsythia (Forsythia suspensa), tobacco (Nicotiana tabacum), alfalfa (Medicago sativa), and soybean (Glycine max). Western analyses showed that the accumulation of CCoAOMT protein was closely correlated with lignification in in vitro TEs of zinnia. Immunolocalization results showed that CCoAOMT was localized in developing TEs of young zinnia stems and in TEs, xylem fibers, and phloem fibers of old stems. CCoAOMT was also found to be specifically associated with all lignifying tissues, including TEs, xylem fibers, and phloem fibers in stems of forsythia, tobacco, alfalfa, soybean, and tomato (Lycopersicon esculentum). The presence of CCoAOMT was evident in xylem ray parenchyma cells of forsythia, tobacco, and tomato. In forsythia and alfalfa, pith parenchyma cells next to the vascular cylinder were lignified. Accordingly, marked accumulation of CCoAOMT in these cells was observed. Taken together, these results showed a close association of CCoAOMT expression with lignification in dicot plants. This supports the hypothesis that the CCoAOMT-mediated methylation branch is a general one in lignin biosynthesis during normal growth and development in dicot plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号