首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study demonstrates synergistic effects on Tac expression by interleukin 1 (IL-1) or tumor necrosis factor alpha (TNF alpha) in combination with the adenylate cyclase stimulator, forskolin (FK), as well as by IL-1 with TNF alpha in the human NK-like leukemic cell line YT. The maximal expression level (greater than 80% positive cells) obtained with FK plus IL-1 or FK plus TNF alpha could not be obtained by increasing the concentration of either agent alone. Furthermore, we demonstrate that Tac protein expression is correlated with increased steady-state Tac mRNA levels. Other agents that increase intracellular cAMP, such as prostaglandin E (PGE) or isobutyl-methylxanthine (IBMX), also synergized with IL-1 or TNF alpha (but not with FK). The findings suggest that cAMP plays a role in regulating Tac expression in YT cells, and that IL-1, TNF, and FK use distinct signal transduction mechanisms, all resulting in the same end point effect, namely, induction of Tac mRNA and cell surface protein expression.  相似文献   

2.
W Scholz 《Cellular immunology》1990,125(2):284-290
The human NK-like leukemic cell line YT was used to study interleukin 2 receptor (IL-2R; Tac) expression induced by activators of distinct signal transduction pathways. Tac expression was induced by active phorbol esters (12-O-tetradecanoylphorbol 13-acetate [TPA] and 4 beta-phorbol 12,13-didecanoate), which directly activate protein kinase C (PKC), as well as forskolin (FK), a stimulator of adenylate cyclase. A synergistic effect on Tac expression was obtained by simultaneous stimulation with optimal concentrations of phorbol esters and FK. Inactive phorbol esters (4 beta-phorbol, 4 alpha-phorbol 12,13-didecanoate) and the inactive analog of FK (1,9-dideoxyforskolin) had no effect on Tac expression. The active phorbol esters synergized also with interleukin 1 (IL-1) and tumor necrosis factor alpha (TNF alpha) in Tac expression. Staurosporine, a potent inhibitor of PKC in vitro, inhibited Tac expression marginally in YT cells stimulated with FK, and enhanced Tac expression in cultures treated with TPA, TNF alpha, or IL-1. Based on the assumption that synergistic effects are observed when two agonists use different signaling pathways, these findings provide evidence that IL-1, TNF, and TPA use different pathways/regulatory elements to regulate Tac expression on the cell surface. Synergistic upregulation of Tac expression by simultaneous activation of distinct pathways may be an important mechanism to modulate the immune response.  相似文献   

3.
4.
5.
Persistent activation of Galphai/o-coupled receptors results in a paradoxical enhancement of subsequent drug-stimulated adenylate cyclase activity. The exact mechanism of this up-regulation in the cyclic AMP signaling pathway, known as heterologous sensitization, remains undefined. The present study was designed to investigate the involvement of cyclic AMP-dependent protein kinase in D2L receptor-mediated sensitization in a neuronal cellular environment. The current studies were conducted in the Cath.a differentiated (CAD) cell line transfected stably with the D2L dopamine receptor (CAD-D2L). Long-term 18 h treatment with the D2 receptor agonist, quinpirole, resulted in a two-fold enhancement of forskolin-stimulated cyclic AMP accumulation. Similarly, long-term treatment with the PKA inhibitors, H89 or Rp-8Br-cAMP, also enhanced adenylate cyclase activity. In contrast, long-term activation of protein kinase A (PKA) by forskolin, isobutylmethylxanthine (IBMX), or dibutyryl cyclic AMP caused a significant reduction in subsequent forskolin-stimulated cyclic AMP accumulation and reduced both quinpirole- and H89-induced heterologous sensitization. The effects of PKA inhibitors and activators did not involve changes in PKA subunit expression. RT-PCR analysis of adenylate cyclase isoform expression patterns revealed the expression of mRNA for ACVI and ACIX in CAD-D2L cells. The ability of ACVI to be negatively regulated by PKA is consistent with the observation that inhibition of PKA results in heterologous sensitization of adenylate cyclase activity in CAD-D2L cells.  相似文献   

6.
Human decidua contains an active adenylate cyclase, and a number of studies indicate that adenylate cyclase is functionally linked to increased in vitro prostaglandin synthesis. Increased decidual prostaglandin synthesis is associated with parturition, and therefore activation of adenylate cyclase may be involved in the control of human parturition. In this study, third trimester human decidual cells were preincubated for no more than 24 h prior to stimulation with a number of reagents which increase cellular cyclic AMP levels. Forskolin rapidly increased intracellular and extracellular cyclic AMP levels, but there was no increase in prostaglandin E2 biosynthesis during incubations ranging from 5 min up to 24 h. Dibutyryl cyclic AMP or 8-bromo-cyclic AMP were also without effect on PGE2 production, which suggests that the adenylate cyclase was not linked to the mechanisms regulating prostaglandin production. Cholera toxin increased basal cyclic AMP and PGE2 synthesis, and was without effect on IL-1β-stimulated PGE2 levels. PGE2 synthesis was increased by 24 h culture with IL-1β in all the cell preparations, indicating that the cells were biologically active, and that the lack of effect of changes in cyclic AMP synthesis on PGE2 levels could not be attributed to a defect in the prostaglandin synthetic pathway. Our findings did not agree with earlier work which showed that changes in cyclic AMP were correlated with changes in PGE2 production by human decidual cells. It is clear that in the previous studies the decidual cells were preincubated for 4–7 days prior to stimulation, in contrast with 24 h in our investigation. We suggest that the functional link between cyclic AMP and PGE2 synthesis reported previously may develop during culture, and not be a part of normal decidual cell function, but further studies are needed to test this hypothesis.  相似文献   

7.
We have examined several features of the regulation of cyclic AMP accumulation in lymphoid cells isolated from peripheral blood of human subjects and in the murine T-lymphoma cell line, S49, S49 cells are unique because of the availability of variant clones with lesions in the pathway of cyclic AMP generation and response. We found that human lymphoid cells prepared at 4 degrees C showed substantially greater cyclic AMP accumulation in response to histamine and the beta-adrenergic agonist isoproterenol than did cells prepared at ambient temperature. The muscarinic cholinergic agonist carbamylcholine and peptide hormone somatostatin failed to inhibit cyclic AMP accumulation in human lymphoid cells and treatment with pertussis toxin (which blocks function of Gi, the guanine nucleotide binding protein that mediates inhibition of adenylate cyclase) only minimally increased cyclic AMP levels in these cells. Thus the Gi component of adenylate cyclase appears to play only a small role in modulating cyclic AMP levels in this mixed population of lymphoid cells. Incubation of whole blood with isoproterenol desensitized human lymphocytes to subsequent stimulation with beta agonist. This desensitization was associated with a redistribution of beta-adrenergic receptors such that a substantial portion of the receptors in intact cells could no longer bind a hydrophilic antagonist. Wild-type S49 lymphoma cells showed a similar redistribution of beta-adrenergic receptors after a few minutes' incubation with agonist. Based on studies in S49 variants, this redistribution is independent of components distal to receptors in the adenylate cyclase/cyclic AMP pathway. By contrast, a more slowly developing, agonist-mediated down-regulation of beta-adrenergic receptors was blunted in variants with defective interaction between receptors and Gs, the guanine nucleotide binding protein that mediates stimulation of adenylate cyclase. Unlike results in human lymphoid cells, S49 cells show a prominent inhibition of cyclic AMP accumulation mediated by Gi; this inhibition is promoted by somatostatin and blocked by pertussis toxin. Inhibition by Gi is unable to account for the marked decrease in ability of the diterpene forskolin to maximally stimulate adenylate cyclase in S49 variants having defective Gs. These results emphasize that both Gs and Gi component are important in modulating cyclic AMP accumulation and receptors linked to adenylate cyclase in S49 lymphoma cells.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

8.
The direct effects of chronic ethanol exposure on adenylate cyclase activity and cyclic AMP content were investigated in primary cerebellar cultures. By morphological criteria these cultures mainly contain granule cells with some astrocytes, and each cell type appears to contain both beta-adrenergic and adenosine-sensitive adenylate cyclase systems. Chronic treatment of the primary cerebellar cultures with 120 mM ethanol for 6 days caused a reduction in the stimulation of cyclic AMP content by isoproterenol and by the adenosine analogue 2-chloroadenosine. Kinetic analysis indicated that the chronic ethanol treatment decreased maximal activation of adenylate cyclase, as well as increased the EC50 values for norepinephrine and 2-chloroadenosine. Activation of norepinephrine-stimulated adenylate cyclase activity by in vitro ethanol was significantly enhanced after the chronic ethanol exposure. However, the chronic treatment did not alter activation of the 2-chloroadenosine-stimulated enzyme by in vitro ethanol. A similar difference in the response to in vitro ethanol after the chronic treatment was observed when cyclic AMP content of the intact cells was measured. The present data indicate that chronic ethanol exposure causes a selective increase in the sensitivity of adenylate cyclase to ethanol in some brain cells and a more generalized desensitization of receptor-stimulated cyclic AMP production.  相似文献   

9.
Both calcitonin and prostaglandin E2 (PGE2) stimulate adenylate cyclase activity in the human breast cancer cell line (T 47D). The maximum cyclic AMP response to calcitonin exceeds that of PGE2. When maximal concentrations of the two hormones were added simultaneously to the cells, the amount of cyclic AMP generated was less than that seen with calcitonin alone. When cells were treated with the protein toxin of Bordetella pertussis (islet-activating protein; IAP) which inactivates the inhibitory regulatory component (Ni) of adenylate cyclase, there was no change in basal or calcitonin-responsive adenylate cyclase in intact cells. However, the PGE2 response was augmented at all dose levels, and this effect was dependent on the concentration of IAP. Moreover, in cells pretreated with IAP, simultaneous addition of PGE2 and calcitonin resulted in additivity rather than in inhibition of cyclic AMP production. The additivity of the response to calcitonin and PGE2 after IAP treatment implies activation of separate pools of adenylate cyclase catalytic subunit by the two hormones. These data are consistent with a model in which calcitonin acts on adenylate cyclase in T 47D cells through stimulatory regulatory components alone, whereas PGE2 acts on the same cells through both stimulatory and inhibitory components. The Ni input can limit the maximum effect of PGE2 and is capable of limiting calcitonin effects when the two agonists are used simultaneously.  相似文献   

10.
The effect of muscarinic agonist on adenylate cyclase was investigated in neonatal islet cells and in a clonal pituitary cell line (GH4C1) following labelling of the intracellular ATP pool with [2,8 3H]adenine. In islet cells carbamylcholine was without effect on basal or glucagon-stimulated adenylate cyclase activity, measured as 3H cyclic AMP production, but inhibited 3H cyclic AMP production in the clonal pituitary cells. The involvement of the inhibitory guanine nucleotide binding protein of adenylate cyclase (Ni) was investigated by the use of the Bordetella pertussis exotoxin, islet activating protein (IAP). Pre-treatment of islet cells with IAP was without effect on adenylate cyclase following carbamylcholine but in the clonal pituitary line abolished the inhibition of 3H cyclic AMP production. It is concluded that in the islet cell, in contrast to the clonal pituitary cell, muscarinic receptors are not effectively coupled through Ni to inhibit adenylate cyclase.  相似文献   

11.
Interleukin 2 (IL 2) receptor (IL 2-R) is constitutively expressed on T cell lines established from the patients with adult T cell leukemia (ATL), which is a human T cell leukemia lymphoma virus (HTLV-1)(+) T4(+)-leukemia endemic in Japan, the United States, and other countries. Many of these cell lines continuously produce an acidic lymphokine, ATL-derived factor (ADF), which preferentially induces the synthesis and expression of IL 2-R on a sensitive HTLV-1(-) non-T cell line (YT). The induced IL 2-R was characterized by the binding of 125I-IL 2 and flow cytometry by using fluoresceinated anti-human IL 2-R monoclonal antibodies (anti-Tac). Scatchard analysis with 125I-IL 2 showed ADF induced high-affinity receptor sites on YT cells. To test the possibility that ADF produced by HTLV-1(+) T cells is involved in the abnormal expression of IL 2-R, we studied the effect of ADF on an HTLV-1(+) IL 2-dependent T cell line (ED) in which the beta-chain gene of the T cell antigen receptor (T beta) was rearranged. Unlike IL 2-independent HTLV-1(+) cell lines that constitutively expressed Il 2-R, the IL 2-R expression on ED cells declined in the absence of crude IL 2 or recombinant IL 2. When either ADF or recombinant IL 2 was added to the culture of ED cells, there was a dose-dependent enhancement of IL 2-R expression in 24 hr. ADF and IL 2 showed a synergism in the IL 2-R induction, and both factors were needed to induce the maximal receptor expression in these T cells. The lack of IL 2 production by ADF-treated YT, as well as ED cell line suggested IL 2 may not be involved in the IL 2-R induction by ADF. Northern blot hybridization with human IL 2-R cDNA probe showed the increase of IL 2-R mRNA in YT cells after ADF-treatment. ADF also enhanced IL 2-R expression of a rat T cell line transformed by HTLV-1(TARS-1), as demonstrated with anti-rat IL 2 receptor monoclonal antibodies (ART-18). An ADF-like IL 2-R-inducing factor was also detected in the conditioned medium of two HTLV-1(+) rat T cell lines (TARL-2 and TART-1), which constitutively expressed a higher number of Il 2-R than TARS-1 cells.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

12.
We identified receptors for neuropeptide Y (NPY) on an established human neuroblastoma cell line, SK-N-MC, which are functionally coupled to adenylate cyclase through the inhibitory guanine nucleotide-binding protein of adenylate cyclase, Gi. Intact SK-N-MC cells bound radiolabeled NPY with a KD of 2 nM and contained approximately 83,000 receptors/cell. Unlabeled porcine and human NPY and structurally related porcine peptide YY (PYY) competed with labeled NPY for binding to the receptors. NPY inhibited cyclic AMP accumulation in SK-N-MC cells stimulated by isoproterenol, dopamine, vasoactive intestinal peptide, cholera toxin, and forskolin. NPY inhibited isoproterenol-stimulated cyclic AMP production in a dose-dependent manner, with half-maximal inhibition at 0.5 nM NPY. Porcine and human NPY and porcine PYY gave similar dose-response curves. NPY also inhibited basal and isoproterenol-stimulated adenylate cyclase activity in disrupted cells. Pertussis toxin treatment of the cells completely blocked the ability of NPY to inhibit cyclic AMP production and adenylate cyclase activity. The toxin catalyzed the ADP-ribosylation of a 41-kDa protein in SK-N-MC cells that corresponds to Gi. The receptors on SK-N-MC cells appeared to be specific for NPY, as other neurotransmitter drugs, such as alpha-adrenergic, dopaminergic, muscarinic, and serotonergic antagonists, did not compete for either NPY binding or NPY inhibition of adenylate cyclase. Thus, SK-N-MC cells may be a useful model for investigating NPY receptors and NPY-mediated signal transduction.  相似文献   

13.
Many human T cell lymphotropic virus-I (HTLV-I) transformed T cells from adult T cell leukemia (ATL) patients continuously produce a humoral factor called ATL-derived factor (ADF) which induces IL-2R/Tac expression on T and NK cells. Using gel filtration, procion red Sepharose, DEAE, and reverse phase chromatography, we have purified ADF protein to homogeneity from 15 liters of serum-free culture supernatant of an HTLV-I(+) T cell line ATL-2. Purified ADF protein had the m.w. of 14,000 by SDS-PAGE and gel filtration, and its isoelectric point is around 5.0. ADF did not react with heteroantibodies against IL-1 alpha and IL-1 beta, which have also IL-2R/Tac-inducing activity on suitable target cells. Partial N-terminal amino acid sequence of ADF is different from other cytokines such as, IFN, BSF-2, and various IL whose cDNA has been cloned. Western blot analysis using rabbit antibodies against N-terminal 10mer synthetic peptide of ADF showed that IL-1 alpha and ADF are different proteins. ADF had its IL-2R/Tac-inducing activity not only on human NK-like cell line YT, but also on HTLV-I(+) T cells, such as ED. In contrast, macrophage-derived IL-1 lacked IL-2R/Tac-inducing activity on ED cells despite their IL-2R/Tac induction on YT, indicating that ADF and IL-1 have their effect via different receptors.  相似文献   

14.
Cyclic AMP has long been proposed to be the intracellular second messenger that conveys the inhibitory signal for T-cell activation and clonal T-cell proliferation. The present study further explores the mechanism by which the cAMP pathway regulates human T-lymphocyte interleukin-2 (IL-2) production and T-cell blastogenesis. Activation of adenylate cyclase, inhibition of cAMP-dependent phosphodiesterase, or the direct addition of the cell-permeable cAMP analog, 8-N3-cAMP, increased occupancy of intracellular cAMP receptors, inhibited IL-2 production, and reduced T-cell proliferation. However, inhibition of cAMP-dependent protein phosphorylation by N-[2-(methylamino)ethyl]-5-isoquinolinesulfonamide (H-8), a cell-permeable inhibitor of cyclic nucleotide-dependent protein kinase, partially restored IL-2 production. Our data support the conclusion that the cAMP pathway conveys an inhibitory signal for IL-2 production and T-cell proliferation via an integral protein phosphorylation step.  相似文献   

15.
A continuous cell line (YT cells) with inducible receptor for T cell growth factor (TCGF)/interleukin 2 (IL 2) was established from a 15-yr-old boy with acute lymphoblastic lymphoma and thymoma. YT cells were tetraploid, having 4q+ chromosomal markers, and proliferated continuously in vitro without conditioned medium (CM) or IL 2. They were weakly positive for OKT9, OKT11, and Tac antigen (Ag), a determinant closely associated with the receptor for IL 2 (IL 2-R), and were negative for OKT1, OKT3, OKT4, and OKT8 Ag. YT cells also expressed HNK-1 Ag and Fc receptors for IgG, which are expressed on natural killer (NK) cells. They retained a killing activity against human cell lines, including K562 (myeloid), T, and B cell lines. Unlike Tac Ag/IL 2-R(+) cell lines derived from adult T cell leukemia (ATL), YT cells were negative for HTLV, as proved by Southern blotting with cDNA for viral DNA. The expression of Tac Ag was markedly enhanced in 18 hr, when YT cells were incubated with CM from PHA-stimulated peripheral blood leukocytes (PBL) or spleen cells, as determined by immunofluorescence by using flow cytometry and binding assay with 125I-anti-Tac antibody (Ab). The binding study with 125I-labeled recombinant IL 2 showed 3.2 X 10(4) IL 2 receptor sites on YT cells precultured with CM. PHA-P and Con A neither agglutinate nor enhance the expression of IL 2-R/Tac antigen on these non-T cell line cells. Furthermore, neither recombinant IL 2 nor gamma-interferon could induce IL 2-R on YT cells, suggesting the presence of a unique IL 2-R inducing factor in PBL or spleen CM. Unlike Tac Ag on HTLV(+), ATL-derived cell lines (Hut-102, MT-1, ATL-2), the expression of Tac Ag on YT cells was down-regulated by anti-Tac Ab. The induction of Tac Ag/IL 2-R on YT cells seemed specific, because the enhancement of Tac Ag expression was not associated with that of Ia Ag and T9/transferrin receptor.  相似文献   

16.
Glucocorticoids are known to increase the cyclic AMP response to parathyroid hormone (PTH) in cultured bone organs or bone cells. Using the osteoblast-like cell line ROS 17/2.8, which possesses receptors for both PTH and glucocorticoids, we investigated which component of the complex hormone receptor-guanine nucleotide regulatory unit--adenylate cyclase was affected by dexamethasone treatment. In response to PTH, isoproterenol or forskolin, a compound that is supposed to act directly on the catalytic unit, cyclic AMP production by intact cells and adenylate cyclase activity in purified plasma membrane were markedly increased by dexamethasone. Whereas NaF, guanosine 5'-[beta gamma-imido]triphosphate and Mn/ stimulated adenylate cyclase activity were similarly enhanced in membranes isolated from glucocorticoid-treated cells, the activity of the stimulatory guanine nucleotide regulatory unit, as assessed by reconstitution into membranes from the CYC- clone, which is genetically devoid of this component, was not altered. Thus in osteoblast-like cells dexamethasone appears to increase cyclic AMP synthesis by influencing the catalytic unit. Moreover, since it has been reported that glucocorticoids may produce changes in cell calcium metabolism, we evaluated cytoplasmic free Ca2+ concentration ([Ca2+]i) and intracellular Ca2+ stores mobilizable by the bivalent-cationophore ionomycin, by using the intracellular fluorescent indicator Quin-2. The results indicated that dexamethasone treatment did not influence [Ca2+]i but markedly decreased ionomycin-releasable Ca2+ stores.  相似文献   

17.
Two different independent processes are operating in cultured thyroid cells to regulate adenylate cyclase/cyclic AMP responsiveness to thyroid stimulators (thyrotropin and prostaglandin E2): firstly, refractoriness or negative regulation [preceding paper], which is specific for each thyroid stimulator, is not mediated by cyclic AMP and is not accompanied by alteration of adenylate cyclase activity; secondly, positive regulation which is characterized by an augmentation of the cyclic AMP response stimulated by thyrotropin and prostaglandin E2. This process is not specific for each thyroid stimulator and is a state of increased susceptibility of cyclic AMP synthesis to stimulation, accompanied by increased activity of the catalytic subunit of adenylate cyclase. Positive regulation is apparently mediated by increased intracellular cyclic AMP levels. It is a time-dependent and dose-dependent process. Very low concentrations (5-50 micronU/ml) of thyrotropin augmented cyclic AMP synthesis stimulated by thyrotropin and prostaglandin E2 whereas higher concentrations (above 0.1 mU/ml) augmented prostaglandin E2 stimulation but induced refractoriness to thyrotropin. Prostaglandin E2 (0.1 to 10 micronM) augmented thyrotropin stimulation and dibutyryl adenosine 3':5'-monophosphate (0.3 to 2 mM) augmented thyrotropin and prostaglandin E2 stimulation. Positive regulation is a slow process which develops within days and increases up to day 5 in culture. Experiments using inhibitors suggested that protein synthesis is required for the full expression of the increase in adenylate cyclase activity induced by the studied thyroid stimulators.  相似文献   

18.
Cultured endothelium derived from three fractions of human cerebral microvessels was used to characterize dopamine (DA) receptors linked to adenylate cyclase activity. DA or D1 agonist, (+/-)-SKF-82958 hydrobromide, stimulated endothelial cyclic AMP formation in a dose-dependent manner. The selective D1 antagonist, (+/-)SCH-23390, inhibited in a dose-dependent manner the production of cyclic AMP induced by DA. The affinity for the D1 receptor appeared to be greater in endothelium derived from large and small microvessels than from capillaries. Cholera toxin ADP-ribosylation of Gs proteins abolished the DA stimulatory effect on endothelial adenylate cyclase, whereas pertussis toxin ADP-ribosylation enhanced the DA-inducible formation, indicating the presence of both D1 and D2 receptors. Agonists of alpha 1-adrenergic receptors (phenylephrine, 6-fluoronorepinephrine) or serotonin (5-HT), which stimulated the production of cyclic AMP, had no additive effect on DA-stimulated cyclic AMP formation. Incubation of these agents with DA produced the same or lower levels of cyclic AMP as compared to that formed by DA alone. The effect of alpha 1-adrenergic agonists or 5-HT on DA production of cyclic AMP was partially prevented by the D2 antagonist, S(-)-sulpiride, or ketanserin (5-HT2 greater than alpha 1 greater than H1 antagonists), respectively. These findings represent the first demonstration of D1- (stimulatory) and D2- (inhibitory) receptors linked to adenylate cyclase in microvascular endothelium derived from human brain. The data also indicate that dopaminergic receptors can interact with either alpha 1-adrenergic or or 5-HT receptors in endothelium on the adenylate cyclase level.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Calcitonin has a wide variety of actions on gastrointestinal function. In this study, we investigated the effects of calcitonin on the growth of human gastric carcinoma cell line KATO III in comparison with those of calcitonin gene-related peptide (CGRP). Calcitonin, but not CGRP, significantly and dose-dependently inhibited the growth of KATO III cells. This inhibition of cell growth was accompanied by an increase in cyclic AMP production. The proliferation of KATO III cells was also inhibited by forskolin and dibutyryl cyclic AMP, although agents which do not stimulate cyclic AMP production had no effect. Furthermore, in the presence of GTP, calcitonin stimulated adenylate cyclase activity in KATO III cell membranes, and this increase was reduced in the absence of GTP. On the other had, neither calcitonin nor CGRP enhanced the turnover of inositolphospholipid or the intracellular Ca2+ level. In addition, 125I-labeled human calcitonin was specifically bound to KATO III cell membranes, and this binding was dose-dependently displaced by unlabeled calcitonin but not CGRP. Furthermore, the specific binding of 125I-labeled human calcitonin to KATO III cell membranes was significantly reduced by addition of GTP but not ATP. These results suggest that calcitonin inhibits the growth of human gastric carcinoma cell line KATO III by stimulating cyclic AMP production via a GTP-dependent process coupled to specific calcitonin receptors.  相似文献   

20.
Isolated adrenocortical carcinoma cells of rat contain alpha 2- and beta-adrenergic receptors. When these cells are incubated with alpha 2-adrenergic agonists, there is a concentration-dependent increase of cyclic GMP that is blocked by the alpha 2-adrenergic antagonist yohimbine but not by the beta-antagonist propranolol. Concomitantly, both p-aminoclonidine (20 microM) and clonidine (100 microM), the alpha 2-adrenergic agonists, stimulate membrane guanylate cyclase activity. In calcium free medium there is no alpha 2-agonist-dependent increase in cyclic GMP. Isoproterenol, a beta-agonist, and forskolin cause an increase in cyclic AMP but not cyclic GMP. The cyclic AMP increase induced by isoproterenol is blocked by propranolol but not by yohimbine. Isoproterenol- and forskolin-dependent increases in cyclic AMP are inhibited by p-aminoclonidine and the inhibition is relieved by yohimbine. These results indicate a dual regulation of guanylate cyclase and adenylate cyclase by the alpha 2-receptor signal: guanylate cyclase is coupled to the receptor in a positive fashion, whereas adenylate cyclase is coupled in a negative fashion. Calcium is obligatory in the cyclic GMP-mediated response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号