首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Summary The surfaces of the palatine shelves undergo important modifications at the expected zones of fusion immediately preceeding contact. Epithelial degeneration occurs just before and during midline contact and adhesion. The cells retract, become less closely associated with their neighbours and finally their boundaries disapear. Their surface become wrinkled whilst at the same time, blebs and short irregular filaments are observed. These features are interpreted as being morphological characteristics of tissue degeneration. This loss of cohesion may favour the spreading and convergence of the expected zones of fusion towards the midline, and then towards the anterior and posterior extremities. On the contrary, during the process of joining certain portions of the surface swell and converge at the expected zone of fusion. In these regions, the area of contact increases firstly in a naso oral direction. Successive layers are made on which large expansions spread (making) to form bridges between the walls.  相似文献   

2.
To explain the disappearance of medial edge epithelial (MEE) cells during palatal fusion, programmed cell death, epithelial-mesenchymal transformation, and migration of these cells to the oral and nasal epithelia have been proposed. However, MEE cell death has not always been accepted as a mechanism involved in midline epithelial seam disappearance. Similarly, labeling of MEE cells with vital lipophilic markers has not led to a clear conclusion as to whether MEE cells migrate, transform into mesenchyme, or both. To clarify these controversies, we first utilized TUNEL techniques to detect apoptosis in mouse palates at the fusion stage and concomitantly analyzed the presence of macrophages by immunochemistry and confocal microscopy. Second, we in vitro infected the MEE with the replication-defective helper-free retroviral vector CXL, which carries the Escherichia coli lacZ gene, and analyzed beta-galactosidase activity in cells after fusion to follow their fate. Our results demonstrate that MEE cells die and transform into mesenchyme during palatal fusion and that dead cells are phagocytosed by macrophages. In addition, we have investigated the effects of the absence of transforming growth factor beta(3) (TGF-beta(3)) during palatal fusion. Using environmental scanning electron microscopy and TUNEL labeling we compared the MEE of the clefted TGF-beta(3) null and wild-type mice. We show that MEE cell death in TGF-beta(3) null palates is greatly reduced at the time of fusion, revealing that TGF-beta(3) has an important role as an inducer of apoptosis during palatal fusion. Likewise, the bulging cells observed on the MEE surface of wild-type mice prior to palatal shelf contact are very rare in the TGF-beta(3) null mutants. We hypothesize that these protruding cells are critical for palatal adhesion, being morphological evidence of increased cell motility/migration.  相似文献   

3.
Role of ERK1/2 signaling during EGF-induced inhibition of palatal fusion   总被引:2,自引:0,他引:2  
During mammalian palatal fusion, the medial edge epithelial (MEE) cells must stop DNA synthesis prior to the initial contact of opposing palatal shelves and thereafter selectively disappear from the midline. Exogenous EGF has been shown to inhibit the cessation of DNA synthesis and induce cleft palate; however, the precise intracellular mechanism has not been determined. We hypothesized that EGF signaling acting via ERK1/2 would maintain MEE DNA synthesis and cell proliferation and consequently inhibit the process of palatal fusion. Palatal shelves from E13 mouse embryos were maintained in organ cultures and stimulated with EGF. EGF-treated palates failed to fuse with intact MEE and had significant ERK1/2 phosphorylation. Both EGF-induced ERK1/2 phosphorylation and BrdU-incorporation were localized in the nucleus of MEE cells. Subsequent inhibition assays using U0126, a specific inhibitor of ERK1/2 phosphorylation, were conducted. U0126 inhibited EGF-induced ERK1/2 phosphorylation in a dose-dependent manner and consequently MEE cells stopped proliferation. The threshold of ERK1/2 inactivation to stop MEE DNA synthesis coincides with the level required to rescue the EGF-induced cleft palate phenotype. These results indicate that EGF-induced inhibition of palatal fusion is dependent on nuclear ERK1/2 activation and that this mechanism must be tightly regulated during normal palatal fusion.  相似文献   

4.
Palatal fusion is a complex, multi-step developmental process; the consequence of failure in this process is cleft palate, one of the most common birth defects in humans. Previous studies have shown that regression of the medial edge epithelium (MEE) upon palatal fusion is required for this process, and TGF-beta signaling plays an important role in regulating palatal fusion. However, the fate of the MEE and the mechanisms underlying its disappearance are still unclear. By using the Cre/lox system, we are able to label the MEE genetically and to ablate Tgfbr2 specifically in the palatal epithelial cells. Our results indicate that epithelial-mesenchymal transformation does not occur in the regression of MEE cells. Ablation of Tgfbr2 in the palatal epithelial cells causes soft palate cleft, submucosal cleft and failure of the primary palate to fuse with the secondary palate. Whereas wild-type MEE cells disappear, the mutant MEE cells continue to proliferate and form cysts and epithelial bridges in the midline of the palate. Our study provides for the first time an animal model for soft palate cleft and submucous cleft. At the molecular level, Tgfb3 and Irf6 have similar expression patterns in the MEE. Mutations in IRF6 disrupt orofacial development and cause cleft palate in humans. We show here that Irf6 expression is downregulated in the MEE of the Tgfbr2 mutant. As a recent study shows that heterozygous mutations in TGFBR1 or TGFBR2 cause multiple human congenital malformations, including soft palate cleft, we propose that TGF-beta mediated Irf6 expression plays an important, cell-autonomous role in regulating the fate of MEE cells during palatogenesis in both mice and humans.  相似文献   

5.
Runx1 is expressed in medial edge epithelial (MEE) cells of the palatal shelf. Conditionally rescued Runx1−/− mice showed limited clefting in the anterior junction between the primary and the secondary palatal shelves, but not in the junction between the secondary palates. In wild type mice, the fusing epithelial surface exhibited a rounded cobblestone-like appearance, while such cellular prominence was less evident in the Runx1 mutants. We also found that Fgf18 was expressed in the mesenchyme underlying the MEE and that locally applied FGF18 induced ectopic Runx1 expression in the epithelium of the palatal explants, indicating that Runx1 was induced by mesenchymal Fgf18 signaling. On the other hand, unpaired palatal explant cultures revealed the presence of anterior-posterior (A-P) differences in the MEE fates and fusion mechanism. Interestingly, the location of anterior clefting in Runx1 mutants corresponded to the region with different MEE behavior. These data showed a novel function of Runx1 in morphological changes in the MEE cells in palatal fusion, which is, at least in part, regulated by the mesenchymal Fgf signaling via an epithelial-mesenchymal interaction.  相似文献   

6.
7.
Osteopontin (OPN) is a secreted phosphoprotein, originally characterized in malignant-transformed epithelial cells. OPN is associated with tumor metastasis of several tumors and is overexpressed in hepatocellular carcinoma (HCC) tissue involving HCC invasion and metastasis. Importantly, OPN is significantly up-regulated in liver injury, inflammation, and hepatitis C virus (HCV)-associated HCC. However, the underlying mechanisms of OPN activation and its role in HCV-mediated liver disease pathogenesis are not known. In this study, we investigated the mechanism of OPN activation in HCV-infected cells. We demonstrate that HCV-mediated Ca2+ signaling, elevation of reactive oxygen species, and activation of cellular kinases such as p38 MAPK, JNK, PI3K, and MEK1/2 are involved in OPN activation. Incubation of HCV-infected cells with the inhibitors of AP-1 and Sp1 and site-directed mutagenesis of AP-1- and Sp1-binding sites on the OPN promoter suggest the critical role of AP-1 and Sp1 in OPN promoter activation. In addition, we show the in vivo interactions of AP-1 and Sp1 with the OPN promoter using chromatin immunoprecipitation assay. We also show the calpain-mediated processing of precursor OPN (∼75 kDa) into ∼55-, ∼42-, and ∼36-kDa forms of OPN in HCV-infected cells. Furthermore, we demonstrate the critical role of HCV-induced OPN in increased phosphorylation of Akt and GSK-3β followed by the activation of β-catenin, which can lead to EMT of hepatocytes. Taken together, these studies provide an insight into the mechanisms of OPN activation that is relevant to the metastasis of HCV-associated HCC.  相似文献   

8.
We have investigated the requirement for Ca(2+) in the fusion and content mixing of rat hepatocyte late endosomes and lysosomes in a cell-free system. Fusion to form hybrid organelles was inhibited by 1,2-bis(2-aminophenoxy) ethane-N,N,N',N'-tetraacetic acid (BAPTA), but not by EGTA, and this inhibition was reversed by adding additional Ca(2+). Fusion was also inhibited by methyl ester of EGTA (EGTA-AM), a membrane permeable, hydrolyzable ester of EGTA, and pretreatment of organelles with EGTA-AM showed that the chelation of lumenal Ca(2+) reduced the amount of fusion. The requirement for Ca(2+) for fusion was a later event than the requirement for a rab protein since the system became resistant to inhibition by GDP dissociation inhibitor at earlier times than it became resistant to BAPTA. We have developed a cell-free assay to study the reformation of lysosomes from late endosome-lysosome hybrid organelles that were isolated from the rat liver. The recovery of electron dense lysosomes was shown to require ATP and was inhibited by bafilomycin and EGTA-AM. The data support a model in which endocytosed Ca(2+) plays a role in the fusion of late endosomes and lysosomes, the reformation of lysosomes, and the dynamic equilibrium of organelles in the late endocytic pathway.  相似文献   

9.
The Wnt β-catenin pathway controls numerous cellular processes including cell differentiation and cell-fate decisions. Wnt ligands engage Frizzled receptors and the low-density-lipoprotein-related protein 5/6 (LRP5/6) receptor complex leading to the recruitment of Dishevelled (Dvl) and Axin1 to the plasma membrane. Axin1 has a regulator of G-protein signaling (RGS) domain that binds adenomatous polyposis coli and Gα subunits, thereby providing a mechanism by which Gα subunits can affect β-catenin levels. Here we show that Wnt signaling enhances the expression of another RGS domain-containing protein, PDZ-RGS3. Reducing PDZ-RGS3 levels impaired Wnt3a-induced activation of the canonical pathway. PDZ-RGS3 bound GSK3β and decreased its catalytic activity toward β-catenin. PDZ-RGS3 overexpression enhanced Snail1 and led to morphological and biochemical changes reminiscent of epithelial mesenchymal transition (EMT). These results indicate that PDZ-RGS3 can enhance signals generated by the Wnt canonical pathway and that plays a pivotal role in EMT.  相似文献   

10.
Summary A new assay for membrane fusion, using the fluorescent probe pyrene-sulphonyl-phosphatidyl ethanolamine, has been developed. Fusion between the envelope of Sendai virus and human erythrocytes or Lettre cells has a Q10 of 4 at 37° C, increasing to 7 at 7 ° C; there is no lag to onset of fusion. Viral neuraminidase has a Q10 of 2.3 between 37° C and 4° C. Its action limits the extent of fusion by causing the elution of virus; this effect is particularly marked at low temperature because of the difference in Q10 for fusion and neuraminidase. The temperature-dependence of the initiation of permeability changes following the removal of inhibitory amounts of Ca2+ is 2; thus membrane fusion is the principal temperature-sensitive step during the permeabilization of cells by Sendai virus. A recovery process, by which cells become insensitive to the removal of Ca2+ and which therefore limits the extent of permeabilization, has a Q10 of 7.4 between 37° C and 21° C. It is concluded that the lag to onset of permeability changes is not due to a lag in virus-cell membrane fusion, but to the gradual acquisition of a threshold level of membrane damage; the extent of permeabilization depends on the rate of fusion relative to the rates of neuraminidase and recovery.  相似文献   

11.
糖尿病是各种因素导致的高血糖慢性代谢疾病,已发展成为流行疾病之一。化学抗糖药虽能控制血糖水平,延缓病程进展,但需长期服用;胰岛移植能从根本上治愈糖尿病,但胰岛来源不足,且需终生应用免疫抑制剂,故并没有得到广泛应用;干细胞是一类能够自我复制的细胞,具有多向分化潜能和旁分泌特性,近年来的研究证明,干细胞在糖尿病治疗方面有着积极的效果,被认为是有效治疗糖尿病的理想细胞类型。因此,就干细胞治疗糖尿病的分子机制和临床研究现状进行简要阐述。  相似文献   

12.
Snakes differ from the other vertebrates with their hyperkinetic skull. To establish the developmental features of the skull bones, involved in prey capture and ingestion, the Grass snake Natrix natrix (Serpentes, Colubridae) embryos are studied at all the successive stages of embryogenesis. Thirty-five N. natrix embryos are examined. Twenty embryos are studied with histological methods; fifteen embryos are cleared and double-stained with alizarin red and alcian blue. The sequence of appearance and formation of the upper and lower jaw bones, palatal complex and associated bones is described in accordance with the table of developmental stages. New features in the ossification mode of some bones are revealed: each bone, namely, the vomer, septomaxilla and maxilla, is formed from three separate ossification centres. Three ossification centres in the maxilla, two ossification centres in the bodies of the septomaxilla and vomer, as well as the unknown additional ossification centre in the vomer had not been previously described in snake embryos. The new data can be used in further comparative research on the reptile skull development and vertebrate phylogeny.  相似文献   

13.
Transforming growth factor beta (TGF-beta) proteins play important roles in morphogenesis of many craniofacial tissues; however, detailed biological mechanisms of TGF-beta action, particularly in vivo, are still poorly understood. Here, we deleted the TGF-beta type I receptor gene Alk5 specifically in the embryonic ectodermal and neural crest cell lineages. Failure in signaling via this receptor, either in the epithelium or in the mesenchyme, caused severe craniofacial defects including cleft palate. Moreover, the facial phenotypes of neural crest-specific Alk5 mutants included devastating facial cleft and appeared significantly more severe than the defects seen in corresponding mutants lacking the TGF-beta type II receptor (TGFbetaRII), a prototypical binding partner of ALK5. Our data indicate that ALK5 plays unique, non-redundant cell-autonomous roles during facial development. Remarkable divergence between Tgfbr2 and Alk5 phenotypes, together with our biochemical in vitro data, imply that (1) ALK5 mediates signaling of a diverse set of ligands not limited to the three isoforms of TGF-beta, and (2) ALK5 acts also in conjunction with type II receptors other than TGFbetaRII.  相似文献   

14.
Multipotent mesenchymal stromal cells [also known as mesenchymal stem cells(MSCs)] are currently being studied as a cell-based treatment for inflammatory disorders. Experimental animal models of human immune-mediated diseases have been instrumental in establishing their immunosuppressive properties. In this review, we summarize recent studies examining the effectiveness of MSCs as immunotherapy in several widely-studied animal models, including type 1 diabetes, experimental autoimmune arthritis, experimental autoimmune encephalomyelitis, inflammatory bowel disease, graft-vs-host disease, and systemic lupus erythematosus. In addition, we discuss mechanisms identified by which MSCs mediate immune suppression in specific disease models, and potential sources of functional variability of MSCs between studies.  相似文献   

15.
Mitochondria move along cytoskeletal tracks, fuse and divide. These dynamic features have been shown to be critical for several mitochondrial functions in cell viability and cell death. After a rapid recall of the proteic machineries that are known to be involved, the review will focus on lipids, other key molecular actors of membrane dynamics. A summary of the current knowledge on lipids and their implication in various cellular membrane fusion/fission processes will be first presented. The review will then report what has been discovered or can be expected on the role of the different families of lipids in mitochondrial membrane fusion and fission processes.  相似文献   

16.
糖尿病心脏病(diabetic cardiomyopathy,DCM)患者心脏病变弥漫、病变程度严重,患病率与死亡率逐年上升,缺乏有效的治疗手段,找到其他的治疗途径已成为一项重要内容。有研究发现,间充质干细胞(mesenchymal stem cells,MSCs)作为一种具有多分化潜能的细胞,能够通过多种机制作用于DCM的病理改变,提高心脏射血分数、改善心室重塑,是一种富有前景的治疗手段,本文着重就DCM的发病机制、MSCs对DCM的治疗机制及效果做一综述,为MSCs在DCM治疗中的应用提供重要的临床前实验依据。  相似文献   

17.
Summary The internal epithelium of mouse forestomach represents a fully keratinized tissue that has many morphological aspects in common with the integumental epidermis. In the present study we have, therefore, analyzed keratin expression in the total epithelium, in subfractions of basal cells and in living and dead suprabasal cells that were obtained by Percoll density gradient centrifugation of trypsin-dissociated forestomach keratinocytes. The keratin analysis revealed that basal forestomach keratinocytes synthesize the same keratin types as basal epidermal cells (60 000, 52 000 and 47 000 daltons), whereas differentiating cells contain both the epidermal suprabasal keratin pair (67 000 and 59 000 daltons) and the suprabasal keratin pair characteristic for other internal squamous epithelia (57 000 and 47 000 daltons). Indirect immunofluorescence using an antibody recognizing the members of the epidermal-type suprabasal keratin pair and in-situ-hybridization experiments using specific cDNA probes for the members of the internal-type keratin pair showed that the two keratin pairs are uniformly coexpressed in living suprabasal forestomach keratinocytes. Furthermore, it could be shown that distinct cells in the basal cell layer acquire the ability to express both the 67 000/59 000 dalton and the 57 000/47 000 dalton keratin pair and that some basal cells apparently lose the ability to synthesize mRNAs for basal keratins.  相似文献   

18.
19.
Summary The epithelial lining of normal human vestibular gingiva and the adjoining alveolar mucosa was subjected to a comparative stereological analysis. Five biopsies collected from 11 to 12 year-old males and females were selected from a total of 14 specimens and, under standardized conditions, processed for light- and electron microscopy. At two levels of magnification, electron micrographs were sampled from five strata in the oral-gingival, and from four strata in the alveolar-mucosal epithelium, mostly in regions of epithelial ridges. Standardized sterological point counting techniques were employed to analyze a total of 710 and 540 electron micrographs from the oralgingival and the alveolar-mucosal epithelium, respectively. The two epithelia, although of similar thickness, show different differentiation patterns. The oral-gingival epithelium consists of four cytologically different strata, the major differentiation step occurring between the lower and upper stratum spinosum of epithelial ridges. Standardized stereological point counting techniques were alveolar-mucosal epithelium, consisting of two cytologically different cell compartments, displays a broad, superficial zone of differentiated flat cells, with 60% of the cytoplasm filled with a dense network of cytoplasmic filaments. The major differentiation step occurs between basal and lower spinous layers. Differentiation phenomena in both epithelia are discussed and individual variations are interpreted in view of genetically determined factors.
Zusammenfassung Das Epithel der normalen menschlichen vestibulären Gingiva und der benachbarten Alveolarschleimhaut wurde vergleichend stereologisch analysiert. Fünf Biopsien von 11–12 Jahre alten gesunden Knaben und Mädchen, die aus insgesamt 14 Biopsien ausgewählt worden waren, wurden standardisiert für licht- und elektronenmikroskopische Studien verarbeitet. Elektronenmikroskopische Aufnahmen wurden in zwei Vergrößerungsstufen aus fünf Schichten des oralen Gingivaepithels und aus vier Schichten des Alveolarschleimhautepithels, zumeist im Bereich epithelialer Leisten, gewonnen. Insgesamt wurden 710 Bilder aus dem oralen Gingivaepithel und 540 Bilder aus dem Alveolarschleimhautepithel mit Hilfe von standardisierten stereologischen Punktzählverfahren analysiert. Die untersuchten Epithelien sind etwa gleich dick, weisen aber sehr verschiedenartige Differenzierungsmuster auf. Das orale Gingivaepithel besteht aus vier zytologisch unterschiedlichen Schichten und bildet ein parakeratinisiertes, 0,1 mm dickes Stratum corneum, wobei der Hauptdifferenzierungsschritt zwischen dem unteren und dem oberen Stratum spinosum im Bereich der epithelialen Leisten erfolgt. Das Alveolarschleimhautepithel weist zwei zytologisch unterschiedliche Zellkompartimente auf und bildet eine breite oberflächliche Lage flacher und differenzierter Zellen, deren Zytoplasma zu 60% aus einem dichten Maschenwerk zytoplasmatischer Filamente besteht. Der Hauptdifferenzierungsschritt dieses Epithels liegt zwischen dem Stratum basale und dem unteren Stratum spinosum. Die verschiedenen Differenzierungsvorgänge werden diskutiert und individuelle Variationen, die in beiden Epithelien auftreten, im Hinblick auf genetische Faktoren erklärt.
  相似文献   

20.
Mitochondria are increasingly recognized as key mediators of acute cellular stress responses in asthma. However, the distinct roles of regulators of mitochondrial physiology on allergic asthma phenotypes are currently unknown. The mitochondrial Ca2+ uniporter (MCU) resides in the inner mitochondrial membrane and controls mitochondrial Ca2+ uptake into the mitochondrial matrix. To understand the function of MCU in models of allergic asthma, in vitro and in vivo studies were performed using models of functional deficiency or knockout of MCU. In primary human respiratory epithelial cells, MCU inhibition abrogated mitochondrial Ca2+ uptake and reactive oxygen species (ROS) production, preserved the mitochondrial membrane potential and protected from apoptosis in response to the pleiotropic Th2 cytokine IL-13. Consequently, epithelial barrier function was maintained with MCU inhibition. Similarly, the endothelial barrier was preserved in respiratory epithelium isolated from MCU-/- mice after exposure to IL-13. In the ovalbumin-model of allergic airway disease, MCU deficiency resulted in decreased apoptosis within the large airway epithelial cells. Concordantly, expression of the tight junction protein ZO-1 was preserved, indicative of maintenance of epithelial barrier function. These data implicate mitochondrial Ca2+ uptake through MCU as a key controller of epithelial cell viability in acute allergic asthma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号