首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The molds Botrytis cinerea, Cladosporium cladosporioides, and the yeast Aureobasidium pullulans, isolated from the leaves of three short-rotation Salix clones, were found to produce indole-3-acetic acid (IAA). Abscisic acid (ABA) production was detected in B. cinerea. The contents of IAA and ABA in the leaves of the Salix clones and the amounts of fungal propagules in these leaves were also measured, in order to evaluate whether the amounts of plant growth regulators produced by the fungi would make a significant contribution to the hormonal quantities of the leaves. The content of ABA, and to a lesser degree that of IAA, showed a positive correlation with the frequency of infection by the hormone-producing organisms. The amounts of hormone-producing fungi on leaves that bore visible colonies were, however, not sufficiently high to support the claim that either the fungal production of ABA or IAA would significantly contribute to the hormonal contents of the leaves of the Salix clones. It is therefore suggested that the effect of fungal IAA production on plants is limited to the rhizosphere and that B. cinerea, which is a known pathogen, induces ABA production by the mother plant as a response to physiological stress.Abbreviations ABA abscisic acid - ABA-Me abscisic acid methyl ester - GC-MS-SIM gas chromatography-selected ion monitoring-mass spectrometry - IAA indole-3-acetic acid - IAA-Me indole-3-acetic acid methyl ester Author for correspondence.  相似文献   

2.
A field experiment was conducted during the summer of 1988 to test the hypothesis that water deficit affects the abscisic acid (ABA) and indole acetic acid (IAA) concentrations in cotton (Gossypium hirsutum L.) flower buds in ways that predispose young fruits (bolls) that subsequently develop from them to increased abscission rates. Water deficit had little effect on the ABA content of flower buds but increased the ABA content of flowers as much as 66%. Water deficit decreased the concentrations of free and conjugated IAA in flower buds during the first irrigation cycle but increased them during the second cycle. Flowers contained much less IAA than buds. Water deficit slightly increased the conjugated IAA content of flowers but had no effect on the concentration of free IAA in flowers. Because water deficit slightly increased the ABA content but did not decrease the IAA content of flowers, any carry-over effect of water deficit on young boll shedding might have been caused by changes in ABA but not from changes in IAA.  相似文献   

3.
Ultrastructural alterations in mesophyll cells as well as variations in bulk leaf endogenous ABA and IAA concentrations were studied in water-stressed field-grown plants of Fatsia japonica. Under water deficit cellular membranes were modified and an increase in vesicles was observed. The main damage to the chloroplasts included thylakoid swelling and disruption of the chloroplast envelope. Concomitant variations in abscisic acid and indole-3-acetic acid were observed. Despite the expected increased in endogenous ABA concentration in relation to water stress, after the highest concentration of ABA, observed at predawn in severely stressed plants (29-1), there was a sharp decline from 2768 pmol g fw–1 to 145 pmol g fw–1; thus in severely stressed plants ABA levels were not related to changes in bulk leaf ABA contents. Water stress did not influence the concentrations of indole-3-acetic acid, although the increase in the endogenous abscisic acid concentration could be related with the ultrastructural changes.Abbreviations ABA abscisic acid - IAA indole-3-acetic acid - leaf water potential  相似文献   

4.
Transfer of sunflower (Helianthus annuus L. cv Russian Mammoth) seedlings from complete nutrient solution to solutions deficient in either boron or calcium resulted in a steady decline in the rate of auxin transport, compared to seedlings that remained in the complete solution. In seedlings transferred to solutions deficient in both B and Ca, the decline in auxin transport was greater than seedlings deficient in only one element. The transfer of B- or Ca-deficient seedlings back to the complete solution prevented further decline in auxin transport, but auxin transport did not increase to the same level as seedlings maintained in complete solution. The significant reduction in auxin transport during the early stages of B or Ca deficiency was not related to (a) reduced growth rate of the hypocotyl, (b) increased acropetal movement of auxin, or (c) lack of respiratory substrates in the hypocotyl. In addition, no difference was found in the water-extractable total and ionic Ca in B-deficient and control nondeficient hypocotyls, indicating a direct effect of B on auxin transport, rather than indirectly by affecting Ca absorption. The rate of auxin transport in hypocotyls deficient in either B or Ca, was inversely correlated with K+ leakage and rate of respiration. The data presented strongly support the view that there are separate sites for B and Ca in the basipetal transport of the plant hormone indoleacetic acid.  相似文献   

5.
6.
Sunflower (Helianthus annuus L. cv Russian Mammoth) hypocotyl segments deficient in either B or Ca exhibited a higher rate of potassium leakage, compared to nondeficient segments. Potassium leakage, used here as an indication of membrane integrity, was completely reversed by the addition of H3BO3 or Ca(NO3)2 to the incubation medium of the B-deficient or Ca-deficient hypocotyl segments, respectively. This role of B and Ca in membrane integrity, which may be important in the entry and exit of auxin in cells, is identified as the first site of action for each of these two essential elements in the basipetal secretion of auxin. A second site for B is postulated because auxin transport was not restored, even when K+ leakage has been completely reversed to the nondeficient level, when B-deficient hypocotyls were incubated in B solution. This lack of reversibility of auxin transport implied that the incubation for 2 h in B solution was not enough to restore the auxin transport process. However, since the transfer of B-deficient seedlings to B solutions prevented further deterioration of auxin transport, these observations suggest that: (a) either an intact seedling, or a longer period of incubation of the hypocotyl in B solution, is required for the synthesis or maintenance of the functional second site for B; (b) B is probably essential in the synthesis of a ligand, which may or may not be needed to bind B, but which is essential in the basipetal transport of auxin. The second site for Ca in auxin transport, is indicated by the complete reversal of its inhibition in Ca-deficient hypocotyl, when incubated in Ca solution. The second site for Ca is thought to be directly involved in the secretion of auxin, in which Ca probably plays the role of a second messenger, as in stimulus-response coupling. The two sites for Ca can be distinguished from each other by their cation specificity. The requirement for Ca in the first site can be substituted by other divalent cations, while the second site is highly specific for Ca.  相似文献   

7.
Meudt WJ  Gaines TP 《Plant physiology》1967,42(10):1395-1399
The method described here is based on a brief report by Harley-Mason and Archer. It involves the use of p-dimethylaminocinnamaldehyde (DMACA), a vinylogue of Ehrlich's reagent, as a color reagent for indoles. Colorimetric analyses of indoleacetic acid (IAA) oxidation reaction mixtures were made with the DMACA reagent as a solution rather than a spray. DMACA reagent will yield a wine-red color with IAA oxidation products in solution. Under similar conditions DMACA reacts with authentic IAA to yield only slight coloration at best. In comparison with other indoles, DMACA is more relative with IAA oxidation reaction products than either Salkowski or Ehrlich's reagents. Data discussed support a concept that the color produced with DMACA is due to the presence of tautomeric oxidation product(s) of IAA.  相似文献   

8.
Rayle DL  Purves WK 《Plant physiology》1967,42(8):1091-1093
Indoleethanol-14C was applied to intact cucumber seedlings and to hypocotyl segments. The presence of indoleacetic acid-14C in tissue extracts was demonstrated by thin layer radiochromatography. There was no evidence of conversion of indoleacetic acid to indoleethanol. It is suggested that the growth-promoting activity of indoleethanol is due to its conversion to indoleacetic acid.  相似文献   

9.
Putrescine, spermidine, spermine and cadaverine have been identified and quantified in rice phloem sap and shoot extracts by HPLC. It is suggested that diamines, putrescine and cadaverine, easily migrate into the phloem, while movement of a triamine, spermidine, and a tetramine, spermine, tend to be restricted. Spermine especially seems to be the most immobile among polyamines. Thus it is indicated that movement of polyamines into phloem is decreased with increasing number of amino groups. Indole-3-acetic acid and abscisic acid in rice phloem sap were also analyzed by HPLC and it is suggested that indole-3-acetic acid is transported freely into phloem, while abscisic acid is much more actively exuded into phloem.  相似文献   

10.
Two-week-old dwarf peas (Pisum sativum cv Little Marvel) were sprayed with gibberellic acid (GA3), and after 3 or 4 days the upper stem and young leaf samples were analyzed for indole-3-acetic acid (IAA) and indole-3-acetyl aspartic acid by an isotope dilution high performance liquid chromatography method. GA3 increased IAA levels as much as 8-fold and decreased indole-3-acetyl aspartic acid levels.  相似文献   

11.
Summary The relation of indoleacetic acid (IAA) transport to accumulation of auxin at the base of cuttings and to polar root formation was investigated with small cuttings from germinating embryos of Pinus lambertiana.The transport of endogenous auxin participates in regeneration of roots. This is shown by the facts that (1) more than 40% of the cuttings rooted without addition of exogenous indoleacetic acid; (2) the first regeneration always occurred at the basal tip of a slanting cut; and (3) 2,3,5-triiodobenzoic acid (TIBA), a specific inhibitor of auxin transport, totally inhibited rooting. Addition of IAA to the medium increased the number of roots formed per rooting hypocotyl.Sections of hypocotyls excised from dormant embryos and tested immediately after 2 h hydration were capable of polar transport of IAA. This polarity increased during the first 3 days of culture because of a marked increase in basipetal transport. Culturing the cuttings in 1 M IAA for 3–5 days doubled both the basipetal transport of 1-14C-IAA by hypocotyl segments and the accumulation of radioactivity at the base of cuttings.The extent of the accumulation at the base of cuttings was similar at early (2 days, first mitoses) and late stages (5 days, organized meristem) of regeneration and was not affected by removal of the regenerating region immediately prior to uptake and transport of 14C-IAA. The accumulation was inhibited by TIBA. In terms of increase in wet and dry weight and mitotic activity, the cotyledons rather than the regenerating root meristems were the most actively growing region of the cuttings. The upper part of the hypocotyl elongated more than the region of the slanting cut where regeneration was occurring.These results provide no support for the idea that the regenerating root controls the direction of polar transport by acting as a sink. The results are consistent with the view that polar auxin transport delivers auxin to the base of the cutting and raises the local concentration to levels sufficient to promote root formation.  相似文献   

12.
Esters of indole-3-acetic Acid from Avena seeds   总被引:1,自引:7,他引:1       下载免费PDF全文
The present studies showed that about 80% of the indole-3-acetic acid extractable from Avena kernels by aqueous acetone was esterified to polymers precipitable by ammonium sulfate and ethanol or acetone. The polymers were positively charged, being adsorbed to cation exchange columns at a pH of 3, or below, and eluted at a pH greater than 4. The polymers were heterogeneous with respect to size, about 5,000 to 20,000 daltons, and charge, exhibiting apparent pKa values of 4.2 and 4.7. The polymer fractions contained esterified IAA, anthrone-reactive material that liberated glucose upon acid hydrolysis, phenolic compounds, and peptidic material with a high proportion of hydrophobic amino acids. Since the esterified IAA was unstable, establishing polymer purity was not possible, and the designation IAA-glucoprotein fraction was adopted.  相似文献   

13.
A new enzyme, named indole-3-aldehyde oxidase (IAldO), was identified in citrus ( Citrus sinensis L. Osbeck cv. Shamouti) leaves. The enzyme was partially purified by (NH4)2SO4 fractionation. Sephadex G-200 gel filtration and DEAE-cellulose ion exchange chromatography. IAldO catalyzes the oxidation of indole-3-aldehyde (IAld) to indole-3-carboxylic acid (ICA) with the production of H2O2. The enzyme is highly specific for IAld. The apparent KM of the enzyme for IAld is 19 μ M . The optimum oxidation of IAld occurs at pH 7. 5. The molecular mass of the enzyme, as determined by Sepharose-6B gel filtration, is about 200 kDa. Based on inhibitor studies, it is concluded that IAldO is not a flavin-linked oxidase and there is no requirement for free sulfhydryl groups or divalent cations for maximum activity. The enzyme is strongly inhibited by benzaldehyde. Ethylene pretreatment, wounding and aging of leaf tissues did not affect enzyme activity, suggesting that the enzyme is constitutive in citrus tissues.  相似文献   

14.
Free and conjugated indole-3-acetic Acid in developing bean seeds   总被引:2,自引:6,他引:2       下载免费PDF全文
The changes in conjugated indole-3-acetic acid (IAA) levels compared to the levels of free IAA have been analyzed during the development of bean (Phaseolus vulgaris L.) seed using quantitative mass spectrometry. Free and ester-linked IAA levels are both relatively high in the early stages of seed development but drop during seed maturation. Concomitantly, the amide-linked IAA becomes the major form of IAA present as the seed matures. In fully mature seed, amide IAA accounts for 80% of the total IAA. The total IAA pool in the seed is maintained at approximately the same level (150-170 nanograms/seed) once the level of free IAA has attained its maximum. Thus, the amount of amide IAA conjugates that accumulate in mature seed is closely related to the amounts of free and ester-linked IAA that disappeared from the rapidly growing seed. Analysis of developing bean pods, from which the seeds were taken for analysis, showed very low levels of both ester and amide-linked IAA conjugates. The pattern of changes seen in the levels of free and conjugated IAA in developing bean seed supports our prior hypothesis suggesting a role of IAA conjugates in the storage of the phytohormone in the seed.  相似文献   

15.
Exogenous [14C]indole-3-acetic acid (IAA) is conjugated in citrus (Citrus sinensis) leaf tissues to one major substance which has been identified as indole-3-acetylaspartic acid (IAAsp). Ethylene pretreatment enhanced the catabolism of [14C]IAA to indole-3-carboxylic acid (ICA), which accumulated as glucose esters (ICGIu). Increased formation of ICGIu by ethylene was accompanied by a concomitant decrease in IAAsp formation. IAAsp and ICGIu were identified by combined gas chromatography-mass spectrometry. Formation of ICGIu was dependent on the concentration of ethylene and the duration of the ethylene pretreatment. It is suggested that the catabolism of IAA to ICA may be one of the mechanisms by which ethylene reduces endogenous IAA levels.  相似文献   

16.
No influence of IAA on the endogenous estrogen content in bean plants was stated. At the same time kinetin was found to increase and abscisic acid to decrease the amounts of estrogens.  相似文献   

17.
18.
Concentrations of abscisic acid and indole-3-acetic acid were measured by GC-MS-SIM in the shoot bark of clonal apple rootstocks (M.27, M.9, MM.106 and MM.111) when the rootstocks were growing actively in the UK. These rootstocks are known to exhibit a wide range of control of tree size when grafted to a common scion. Shoot bark of the dwarfing rootstocks (M.27 and M.9) contained higher concentrations than the more vigorous rootstocks (MM.106 and MM.111) of ABA. Concentrations of ABA increased from May to July, followed by a decline in August. Only the month of sampling showed any significant influence on the concentration of IAA in shoot bark; however, there was a general increase, although not significant statistically, in IAA concentration with the increasing invigoration-capacity of the rootstock. At each sampling date the dwarfing rootstocks showed greater ratios of ABA:IAA than the invigorating rootstocks and generally the ratio for each rootstock increased from May to July, except for M.27 which showed the smallest ratio in June and the largest ratio in August. The results are discussed in relation to the generally accepted control exerted by the rootstocks on tree size and the possible influence of ABA on polar auxin transport.  相似文献   

19.
Skok J 《Plant physiology》1968,43(2):215-223
Stem applications of indole-3-acetic acid (IAA) or gibberellic acid (GA) did not prevent or alter tumor or teratoma formation in debudded tobacco plants (Nicotiana tabacum L., var. One Sucker). The materials produced intense (in case of GA) and moderate (in case of IAA) stem proliferations when applied to debudded plants but were without effect on intact plants.

The results suggest that debudding-tumors are probably not related to or a result of an auxin or gibberellin deficit and that total debudding has a marked physiological effect on the plant. The altered physiological condition of the debudded plant, indicated by its responses to IAA and GA, may likely be related to tumor and teratoma formation.

  相似文献   

20.
Park RD  Park CK 《Plant physiology》1987,84(3):826-829
The stability of 21 amino acid conjugates of indole-3-acetic acid (IAA) toward horseradish peroxidase (HRP) was studied. The IAA conjugates of Arg, Ile, Leu, Tyr, and Val were oxidized readily by peroxidase. Those of Ala, β-Ala, Asp, Cys, Gln, Glu, Gly, and Lys were not degraded and their recovery was above 92% after 1 hour incubation with HRP. A correlation between the stability of IAA conjugates toward peroxidase-catalyzed oxidation and the hydrophobicity of the amino acid moiety conjugated to IAA was demonstrated. Polar amino acid conjugates of IAA are more resistant to HRP-catalyzed oxidation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号