首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Voltage-gated ion channels are responsible for transmitting electrochemical signals in both excitable and non-excitable cells. Structural studies of voltage-gated potassium and sodium channels by X-ray crystallography have revealed atomic details on their voltage-sensor domains (VSDs) and pore domains, and were put in context of disparate mechanistic views on the voltage-driven conformational changes in these proteins. Functional investigation of voltage-gated channels in membranes, however, showcased a mechanism of lipid-dependent gating for voltage-gated channels, suggesting that the lipids play an indispensible and critical role in the proper gating of many of these channels. Structure determination of membrane-embedded voltage-gated ion channels appears to be the next frontier in fully addressing the mechanism by which the VSDs control channel opening. Currently electron crystallography is the only structural biology method in which a membrane protein of interest is crystallized within a complete lipid-bilayer mimicking the native environment of a biological membrane. At a sufficiently high resolution, an electron crystallographic structure could reveal lipids, the channel and their mutual interactions at the atomic level. Electron crystallography is therefore a promising avenue toward understanding how lipids modulate channel activation through close association with the VSDs.  相似文献   

2.
A Baumann  A Grupe  A Ackermann    O Pongs 《The EMBO journal》1988,7(8):2457-2463
Voltage-sensitive potassium channels are found in vertebrate and invertebrate central nervous systems. We have isolated a rat brain cDNA by cross-hybridization with a probe of the Drosophila Shaker gene complex. Structural conservation of domains of the deduced protein indicate that the rat brain cDNA encodes a voltage-sensitive potassium channel. Of the deduced amino acid sequence, 82% is homologous to the Drosophila Shaker protein indicating that voltage-sensitive potassium channels have been highly conserved during evolution. Selective pressure was highest on sequences facing the intracellular side and on proposed transmembrane segments S4-S6, suggesting that these domains are crucial for voltage-dependent potassium channel function. The corresponding rat mRNA apparently belongs to a family of mRNA molecules which are preferentially expressed in the central nervous system.  相似文献   

3.
Electrical excitability is a fundamental property of the neuromuscular systems of metazoans. The varied response of neurons to electrical excitation is largely accounted for by a diverse set of voltage-gated potassium (KV) channels in the excitable membrane. The complete structure of a KV channel is not yet available. However, recent structural biological experiments have begun to provide new insight into how specific KV channels are formed and regulated, and how they function and interact with other proteins. In particular, the selectivity of KV channels for K+ and suggestions as to how these structural elements might assemble into a functional KV channel are discussed.  相似文献   

4.
The severe acute respiratory syndrome-coronavirus (SARS-CoV) caused an outbreak of atypical pneumonia in 2003. The SARS-CoV viral genome encodes several proteins which have no homology to proteins in any other coronaviruses, and a number of these proteins have been implicated in viral cytopathies. One such protein is 3a, which is also known as X1, ORF3 and U274. 3a expression is detected in both SARS-CoV infected cultured cells and patients. Among the different functions identified, 3a is a capable of inducing apoptosis. We previously showed that caspase pathways are involved in 3a-induced apoptosis. In this study, we attempted to find out protein domains on 3a that are essential for its pro-apoptotic function. Protein sequence analysis reveals that 3a possesses three major protein signatures, the cysteine-rich, Yxx and diacidic domains. We showed that 3a proteins carrying respective mutations in these protein domains exhibit reduced pro-apoptotic activities, indicating the importance of these domains on 3a's pro-apoptotic function. It was previously reported that 3a possesses potassium ion channel activity. We further demonstrated that the blockade of 3a's potassium channel activity abolished caspase-dependent apoptosis. This report provides the first evidence that ion channel activity of 3a is required for its pro-apoptotic function. As ion channel activity has been reported to regulate apoptosis in different pathologic conditions, finding ways to modulate the ion channel activity may offer a new direction toward the inhibition of apoptosis triggered by SARS-CoV.  相似文献   

5.
The mechanism of ion channel opening is one of the most fascinating problems in membrane biology. Based on phenomenological studies, early researchers suggested that the elementary process of ion channel opening may be the intramembrane charge movement or the orientation of dipolar proteins in the channel. In spite of the far reaching significance of these hypotheses, it has not been possible to formulate a comprehensive molecular theory for the mechanism of channel opening. This is because of the lack of the detailed knowledge on the structure of channel proteins. In recent years, however, the research on the structure of channel proteins made marked advances and, at present, we are beginning to have sufficient information on the structure of some of the channel proteins, e.g. potassium-channel protein and beta-subunits. With these new information, we are now ready to have another look at the old hypothesis, in particular, the dipole moment of channel proteins being the voltage sensor for the opening and closing of ion channels. In this paper, the dipole moments of potassium channel protein and beta-subunit, are calculated using X-ray diffraction data. A large dipole moment was found for beta-subunits while the dipole moment of K-channel protein was found to be considerably smaller than that of beta-subunits. These calculations were conducted as a preliminary study of the comprehensive research on the dipolar structure of channel proteins in excitable membranes, above all, sodium channel proteins.  相似文献   

6.
KCNQ1 channels are voltage-gated potassium channels that are widely expressed in various non-neuronal tissues, such as the heart, pancreas, and intestine. KCNE proteins are known as the auxiliary subunits for KCNQ1 channels. The effects and functions of the different KCNE proteins on KCNQ1 modulation are various; the KCNQ1-KCNE1 ion channel complex produces a slowly activating potassium channel that is crucial for heartbeat regulation, while the KCNE3 protein makes KCNQ1 channels constitutively active, which is important for K(+) and Cl(-) transport in the intestine. The mechanisms by which KCNE proteins modulate KCNQ1 channels have long been studied and discussed; however, it is not well understood how different KCNE proteins exert considerably different effects on KCNQ1 channels. Here, we approached this point by taking advantage of the recently isolated Ci-KCNQ1, a KCNQ1 homologue from marine invertebrate Ciona intestinalis. We found that Ci-KCNQ1 alone could be expressed in Xenopus laevis oocytes and produced a voltage-dependent potassium current, but that Ci-KCNQ1 was not properly modulated by KCNE1 and totally unaffected by coexpression of KCNE3. By making chimeras of Ci-KCNQ1 and human KCNQ1, we determined several amino acid residues located in the pore region of human KCNQ1 involved in KCNE1 modulation. Interestingly, though, these amino acid residues of the pore region are not important for KCNE3 modulation, and we subsequently found that the S1 segment plays an important role in making KCNQ1 channels constitutively active by KCNE3. Our findings indicate that different KCNE proteins use different domains of KCNQ1 channels, and that may explain why different KCNE proteins give quite different outcomes by forming a complex with KCNQ1 channels.  相似文献   

7.
Potassium channel structure: domain by domain   总被引:4,自引:0,他引:4  
Since the determination of the structure of a bacterial potassium channel, the ion channel community has managed to gain momentum in the quest for a complete picture. The information is coming at a steady flow, on a domain by domain basis. Recent discoveries are starting to reveal clues to the complex manner in which potassium channels show enormous diversity of function and also to their methods of regulation. Currently, the structures of four domains are known, with the most recent addition being the Kvbeta structure. As efforts continue in the study of the transmembrane domains, especially the voltage-sensing apparatus, there has been a new realization with respect to the identification and role of the cytoplasmic domains in protein-protein interactions in particular. An additional discovery, considerably aided by recent genomic analysis, is that potassium channels comprising subunits with two pore regions and four transmembrane helices combined in a dimeric fashion are abundant and are probable targets for local anesthetics.  相似文献   

8.
Parchorin, p64 and the related chloride intracellular channel (CLIC) proteins are widely expressed in multicellular organisms and have emerged as candidates for novel, auto-inserting, self-assembling intracellular anion channels involved in a wide variety of fundamental cellular events including regulated secretion, cell division and apoptosis. Although the mammalian phosphoproteins p64 and parchorin (49 and 65K, respectively) have only been indirectly implicated in anion channel activity, two CLIC proteins (CLIC1 and CLIC4, 27 and 29K, respectively) appear to be essential molecular components of anion channels, and CLIC1 can form anion channels in planar lipid bilayers in the absence of other cellular proteins. However, these putative ion channel proteins are controversial because they exist in both soluble and membrane forms, with at least one transmembrane domain. Even more surprisingly, soluble CLICs share the same glutaredoxin fold as soluble omega class glutathione-S-transferases. Working out how these ubiquitous, soluble proteins unfold, insert into membranes and then refold to form integral membrane proteins, and how cells control this potentially dangerous process and make use of the associated ion channels, are challenging prospects. Critical to this future work is the need for better characterization of membrane topology, careful functional analysis of reconstituted and native channels, including their conductances and selectivities, and detailed structure/function studies including targeted mutagenesis to investigate the structure of the putative pore, the role of protein phosphorylation and the role of conserved cysteine residues.  相似文献   

9.
Membrane proteins that respond to changes in transmembrane voltage are critical in regulating the function of living cells. The voltage-sensing domains (VSDs) of voltage-gated ion channels are extensively studied to elucidate voltage-sensing mechanisms, and yet many aspects of their structure-function relationship remain elusive. Here, we transplanted homologous amino acid motifs from the tetrameric voltage-activated potassium channel Kv3.1 to the monomeric VSD of Ciona intestinalis voltage-sensitive phosphatase (Ci-VSP) to explore which portions of Kv3.1 subunits depend on the tetrameric structure of Kv channels and which properties of Kv3.1 can be transferred to the monomeric Ci-VSP scaffold. By attaching fluorescent proteins to these chimeric VSDs, we obtained an optical readout to establish membrane trafficking and kinetics of voltage-dependent structural rearrangements. We found that motifs extending from 10 to roughly 100 amino acids can be readily transplanted from Kv3.1 into Ci-VSP to form engineered VSDs that efficiently incorporate into the plasma membrane and sense voltage. Some of the functional features of these engineered VSDs are reminiscent of Kv3.1 channels, indicating that these properties do not require interactions between Kv subunits or between the voltage sensing and the pore domains of Kv channels.  相似文献   

10.
Ma D  Taneja TK  Hagen BM  Kim BY  Ortega B  Lederer WJ  Welling PA 《Cell》2011,145(7):1102-1115
Mechanisms that are responsible for sorting newly synthesized proteins for traffic to the cell surface from the Golgi are poorly understood. Here, we show that the potassium channel Kir2.1, mutations in which are associated with Andersen-Tawil syndrome, is selected as cargo into Golgi export carriers in an unusual signal-dependent manner. Unlike conventional trafficking signals, which are typically comprised of short linear peptide sequences, Golgi exit of Kir2.1 is dictated by residues that are embedded within the confluence of two separate domains. This signal patch forms a recognition site for interaction with the AP1 adaptor complex, thereby marking Kir2.1 for incorporation into clathrin-coated vesicles at the trans-Golgi. The identification of a trafficking signal in the tertiary structure of Kir2.1 reveals a quality control step that couples protein conformation to Golgi export and provides molecular insight into how mutations in Kir2.1 arrest the channels at the Golgi.  相似文献   

11.
ATP-sensitive potassium (K(ATP)) channels conduct potassium ions across cell membranes and thereby couple cellular energy metabolism to membrane electrical activity. Here, we report the heterologous expression and purification of a functionally active K(ATP) channel complex composed of pore-forming Kir6.2 and regulatory SUR1 subunits, and determination of its structure at 18 A resolution by single-particle electron microscopy. The purified channel shows ATP-ase activity similar to that of ATP-binding cassette proteins related to SUR1, and supports Rb(+) fluxes when reconstituted into liposomes. It has a compact structure, with four SUR1 subunits embracing a central Kir6.2 tetramer in both transmembrane and cytosolic domains. A cleft between adjacent SUR1s provides a route by which ATP may access its binding site on Kir6.2. The nucleotide-binding domains of adjacent SUR1 appear to interact, and form a large docking platform for cytosolic proteins. The structure, in combination with molecular modelling, suggests how SUR1 interacts with Kir6.2.  相似文献   

12.
Ether-a-go-go potassium channels have large intracellular regions containing ‘Per-Ant-Sim’ (PAS) and cyclic nucleotide binding (cNBD) domains at the N- and C-termini, respectively. In heag1 and heag2 channels, recent studies have suggested that the N- and C-terminal domains interact, and affect activation properties. Here, we have studied the effect of mutations of residues on the surfaces of PAS and cNBD domains. For this, we introduced alanine and lysine mutations in heag1 channels, and recorded currents by two-electrode voltage clamp. In both the PAS domain and the cNBD domain, contiguous areas of conserved residues on the surfaces of these domains were found which affected the activation kinetics of the channel. Next, we investigated possible effects of mutations on domain interactions of PAS and cNBD proteins in heag2 by co-expressing these domain proteins followed by analysis with native gels and western blotting. We found oligomeric association between these domains. Mutations F30A and A609K (on the surfaces of the PAS and cNBD domains, respectively) affected oligomeric compositions of these domains when proteins for PAS and cNBD domains were expressed together. Taken together, the data suggest that the PAS and cNBD domains form interacting oligomers that have roles in channel function.  相似文献   

13.
KCNH channels form an important family of voltage gated potassium channels. These channels include a N-terminal Per-Arnt-Sim (PAS) domain with unknown function. In other proteins PAS domains are implicated in cellular responses to environmental queues through small molecule binding or involvement in signaling cascades. To better understand their role we characterized the structural properties of several channel PAS domains. We determined high resolution structures of PAS domains from the mouse EAG (mEAG), drosophila ELK (dELK) and human ERG (hERG) channels and also of the hERG domain without the first nine amino acids. We analyzed these structures for features connected to ligand binding and signaling in other PAS domains. In particular, we have found cavities in the hERG and mEAG structures that share similarities with the ligand binding sites from other PAS domains. These cavities are lined by polar and apolar chemical groups and display potential flexibility in their volume. We have also found that the hydrophobic patch on the domain β-sheet is a conserved feature and appears to drive the formation of protein-protein contacts. In addition, the structures of the dELK domain and of the truncated hERG domain revealed the presence of N-terminal helices. These helices are equivalent to the helix described in the hERG NMR structures and are known to be important for channel function. Overall, these channel domains retain many of the PAS domain characteristics known to be important for cell signaling.  相似文献   

14.
15.
The mouse potassium channel Kir2.3 possesses conserved extracellular cysteine residues at positions 113 and 145. We have investigated the role of these cysteines in structure/function and membrane trafficking. Cysteine to serine mutations resulted in the absence of potassium currents in oocytes and co-expression of these mutants with wild-type channel showed a dominant negative inhibition of wild-type currents. FLAG-tagged channels expressed in oocytes were detected in the cell membrane by anti-FLAG antibody for wild-type and mutant channels. In vitro translation using the reticulocyte lysate system showed that mutation of these residues did not affect processing nor insertion into membranes. Cysteine residues at 113 and 145 are therefore required for function of the Kir2.3 channel but not for processing into the cell membrane; disulfide bonds between subunits are unlikely.  相似文献   

16.
Membrane proteins control the traffic across cell membranes and thereby play an essential role in cell function from transport of various solutes to immune response via molecular recognition. Because it is very difficult to determine the structures of membrane proteins experimentally, computational methods have been increasingly used to study their structure and function. Here we focus on two classes of membrane proteins—ion channels and transporters—which are responsible for the generation of action potentials in nerves, muscles, and other excitable cells. We describe how computational methods have been used to construct models for these proteins and to study the transport mechanism. The main computational tool is the molecular dynamics (MD) simulation, which can be used for everything from refinement of protein structures to free energy calculations of transport processes. We illustrate with specific examples from gramicidin and potassium channels and aspartate transporters how the function of these membrane proteins can be investigated using MD simulations.  相似文献   

17.
Liu HL  Lin JC 《Proteins》2004,55(3):558-567
Homology models of the pore loop domain of six eukaryotic potassium channels, Kv1.1-Kv1.6, were generated based on the crystallographic structure of KcsA. The results of amino acid sequence alignment indicate that these Kv channels are composed of two structurally and functionally independent domains: the N-terminal 'voltage sensor' domain and the C-terminal 'pore loop' domain. The homology models reveal that the pore loop domains of these Kv channels exhibit similar folds to those of KcsA. The structural features and specific packing of aromatic residues around the selectivity filter of these Kv channels are nearly identical to those of KcsA, whereas most of the structural variations occur in the turret as well as in the inner and outer helices. The distribution of polar and nonpolar side chains on the surfaces of the KcsA and Kv channels reveals that they exhibit a segregation of side chains common to most integral membrane proteins. As the hydrogen bond between Glu71 and Asp80 in KcsA plays an important role in stabilizing the channel, the substituted Val residue in the Kv family corresponding to Glu71 of KcsA stabilizes the channel by making hydrophobic contact with Tyr residue from the signature sequence of the selectivity filter. The homology models of these Kv channels provide particularly attractive subjects for further structure-based studies.  相似文献   

18.
19.
Cysteine-rich secretory proteins (CRISPs) are widely distributed, and notably occur in the mammalian reproductive tract and in the salivary glands of venomous reptiles. Most CRISPs can inhibit ion channels, such as the cyclic nucleotide-gated ion channel, potassium channel, and calcium channel. Natrin is a CRISP that has been purified from snake venom. Its targets include the calcium-activated potassium channel, the voltage-gated potassium channel, and the calcium release channel/ryanodine receptor (RyR). Immunoprecipitation experiments showed that natrin binds specifically to type 1 RyR (RyR1) from skeletal muscle. Natrin was found to inhibit both the binding of ryanodine to RyR1, and the calcium-channel activity of RyR1. Cryo-electron microscopy and single-particle image reconstruction analysis revealed that natrin binds to the clamp domains of RyR1. Docking of the crystal structure of natrin into our cryo-electron microscopy density map of the RyR1 + natrin complex suggests that natrin inhibits RyR1 by stabilizing a domain-domain interaction, and that the cysteine-rich domain of natrin is crucial for binding. These findings help reveal how natrin toxin inhibits the RyR calcium release channel, and they allow us to posit a generalized mechanism that governs the interaction between CRISPs and ion channels.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号