首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
In North America, wild pigs (Sus scrofa; feral pigs, feral swine, wild boars) are a widespread exotic species capable of creating large-scale biotic and abiotic landscape perturbations. Quantification of wild pig environmental effects has been particularly problematic in northern climates, where they occur only recently as localized populations at low densities. Between 2016 and 2017, we assessed short-term (within ~2 yrs of disturbance) effects of a low-density wild pig population on forest features in the central Lower Peninsula of Michigan, USA. We identified 16 8-ha sites using global positioning system locations from 7 radio-collared wild pigs for sampling. Within each site, we conducted fine-scale assessments at 81 plots and quantified potential disturbance by wild pigs. We defined disturbance as exposure of overturned soil, often resulting from rooting behavior by wild pigs. We quantified ground cover of plants within paired 1-m2 frames at each plot, determined effects to tree regeneration using point-centered quarter sampling, and collected soil cores from each plot. We observed less percent ground cover of native herbaceous plants and lower species diversity, particularly for plants with a coefficient of conservatism ≥5, in plots disturbed by wild pigs. We did not observe an increase in colonization of exotic plants following disturbance, though the observed prevalence of exotic plants was low. Wild pigs did not select for tree species when rooting, and we did not detect any differences in regeneration of light- and heavy-seeded tree species between disturbed or undisturbed plots. Magnesium and ammonium content in soils were lower in disturbed plots, suggesting soil disturbance accelerated leaching of macronutrients, potentially altering nitrogen transformation. Our study suggested that disturbances by wild pigs, even at low densities, alters short-term native herbaceous plant diversity and soil chemistry. Thus, small-scale exclusion of wild pigs from vulnerable and rare plant communities may be warranted. © 2020 The Wildlife Society.  相似文献   

2.
The importance of disturbance intensity and herbivory by cattle and white grubs, or the larvae of June beetles (including Phyllophaga fimbripes), to recovery of shortgrass steppe ecosystems in Colorado, U.S.A. were evaluated over a fourteen year time period. Disturbance intensity was defined by survival of the dominant grass species (Bouteloua gracilis) after an outbreak of root feeding activity by white grubs. Sixteen patches of vegetation consisting of four pairs of adjacent ungrazed-grazed by cattle locations with two replicates that were recently affected by white grubs were selected in 1977. Disturbance intensity was determined in 1977 by the area in each patch that contained live tillers of B. gracilis. Permanent plots were located both within and outside of each patch. Plant basal cover and density by species were estimated at time of peak aboveground biomass in six different years on each plot.Successional dynamics on patches was similar to areas affected by other types of disturbances, however, rate of recovery was faster for patches affected by grubs. Grazing by cattle was infrequently important to plant recovery, a result similar to effects of grazing on other aspects of shortgrass steppe ecosystems. Disturbance intensity was important to recovery of B. gracilis since tiller survival in 1977 was linearly related to cover in each year of sampling. For ungrazed patches, initial conditions were important to recovery of B. gracilis for as many as 14 years. For grazed patches, initial conditions decreased and grazing increased in importance through time. Changes in resource quality and a more uniform distribution of roots due to grazing likely resulted in more complete mortality of plants by grubs under grazed compared to ungrazed conditions.Persistence of shortgrass ecosystems in spite of disturbances with different intensities are determined at least in part by characteristics of disturbances interacting with the ability of plants to respond, and in part by the evolutionary history of the system. Although white grubs affect shortgrass communities infrequently, they have large and important effects on plant community structure through time, and represent an important class of disturbance defined by intensity.  相似文献   

3.
Successful establishment of plants is limited by both biotic and abiotic conditions and their interactions. Seedling establishment is also used as a direct measure of habitat suitability, but transient changes in vegetation might provide windows of opportunity allowing plant species to colonize sites which otherwise appear unsuitable. We aimed to study spatio-temporal variability in the effects of resident vegetation on establishment, growth and reproduction of dry grassland species in abandoned arable fields representing potentially suitable habitats. Seeds were sown in disturbed (bare of vegetation and roots) and undisturbed plots in three fields abandoned in the last 20 years. To assess the effects of temporal variation on plant establishment, we initiated our experiments in two years (2007 and 2008). Seventeen out of the 35 sown species flowered within two years after sowing, while three species completely failed to become established. The vegetation in the undisturbed plots facilitated seedling establishment only in the year with low spring precipitation, and the effect did not hold for all species. In contrast, growth and flowering rate were consistently much greater in the disturbed plots, but the effect size differed between the fields and years of sowing. We show that colonization is more successful when site opening by disturbance coincide with other suitable conditions such as weather or soil characteristics. Seasonal variability involved in our study emphasizes the necessity of temporal replication of sowing experiments. Studies assessing habitat suitability by seed sowing should either involve both vegetation removal treatments and untreated plots or follow the gradient of vegetation cover. We strongly recommend following the numbers of established individuals, their sizes and reproductive success when assessing habitat suitability by seed sowing since one can gain completely different results in different phases of plant life cycle.  相似文献   

4.
Small-scale spatial heterogeneity of soil organic matter (SOM) associated with patterns of plant cover can strongly influence population and ecosystem dynamics in dry regions but is not well characterized for semiarid grasslands. We evaluated differences in plant and soil N and C between soil from under individual grass plants and from small openings in shortgrass steppe. In samples from 0 to 5 cm depth, root biomass, root N, total and mineralizable soil N, total and respirable organic C, C:N ratio, fraction of organic C respired, and ratio of respiration to N mineralization were significantly greater for soil under plants than soil from openings. These differences, which were consistent for two sites with contrasting soil textures, indicate strong differentiation of surface soil at the scale of individual plants, with relative enrichment of soil under plants in total and active SOM. Between-microsite differences were substantial relative to previously reported differences associated with landscape position and grazing intensity in shortgrass steppe. We conclude that microscale heterogeneity in shortgrass steppe deserves attention in investigation of controls on ecosystem and population processes and when sampling to estimate properties at plot or site scales.  相似文献   

5.
The effects of soil disturbance caused by the uprooting of a single or a few canopy trees on species richness and composition of vascular plant species and bryophytes were examined in a temperate beech forest (Fagus sylvatica) in northern Germany. We recorded the vegetation in 57 pairs of disturbed and adjacent undisturbed plots and established a chronosequence of mound ages to study the effect of time since microsite formation on plant species richness and composition. We found significant differences in plant species richness and composition between disturbed and adjacent undisturbed plots. Species richness of both vascular plants and bryophytes was higher in the disturbed than in the undisturbed plots, but these differences were more pronounced for bryophytes. We suggest that three main factors are responsible for this differential response. The availability of microsites on the forest floor that are suitable for the recruitment of bryophytes is lower than for vascular plants. Establishment of bryophytes in disturbed microsites is favoured by a greater abundance of propagules in the close vicinity and in the soil of the disturbed microsites, as well as by a greater variety of regeneration strategies in bryophytes than in vascular plants. Time since mound formation was a major factor determining plant species richness and composition. A significant decrease in the mean number of species was found from young mounds to intermediate and old mounds. However, differences were observed between vascular plants and bryophytes in the course of changes through time in species richness and composition. A large number of exclusive and infrequent vascular plant species was observed on young mounds, among them several disturbance specialists. We suggest that the establishment of many vascular plant species was infrequent and short-lived due to unfavourable light conditions and a low abundance of propagules. By contrast, the development of a litter layer was the main reason for the decreased mean number of bryophytes on old mounds. Our study supports the view that groups of species differing in important life history traits exhibit different responses to soil disturbance.  相似文献   

6.
Summary We examined the impact of pocket gopher disturbances on the dynamics of a shortgrass prairie community. Through their burrowing activity, pocket gophers (Thomomys bottae) cast up mounds of soil which both kill existing vegetation and create sites for colonization by competitively-inferior plant species. Three major patterns emerge from these disturbances: First, we show that 10 of the most common herbaceous perennial dicots benefit from pocket gopher disturbance; that is, a greater proportion of seedlings are found in the open space created by pocket gopher disturbance than would be expected based on the availability of disturbed habitat. Additionally, these seedlings exhibited higher growth rates than adjacent seedlings of the same species growing in undisturbed habitat. Second, we tested two predictions of the Intermediate Disturbance Hypothesis and found that species diversity was greatest for plots characterized by disturbances of intermediate age. However, we did not detect significant differences in diversity between plots characterized by intermediate and high levels of disturbance, indicating that many species are adapted to or at least tolerant of high levels of disturbance. Third, we noted that the abundance of grasses decreased with increasing disturbance, while the abundance of dicots increased with increasing disturbance.  相似文献   

7.
This investigation determined the response of soil microbial communities to enhanced UV‐B radiation and disturbance in upland grassland. A factorial field experiment encompassing two levels of UV‐B supplementation (simulating ambient and a 30% increase in stratospheric ozone) and two levels of disturbance (disturbed and undisturbed) was established at Buxton Climate Change Impacts Laboratory, Derbyshire, UK, and maintained for 7 years prior to sampling. Enhanced UV‐B increased microbial utilization of carbohydrates, carboxylic acids, polymers and aromatic compounds present in Biolog® GN plates when inoculated with soils taken from disturbed plots, but did not affect carbon utilization of soil microbial communities associated with undisturbed plots (UV‐B×Disturbance interaction, P<0.05 for each substrate type). UV‐B treatment did not affect numbers of bacteria or fungi. Direct microscopic counts showed fewer bacteria in soil originating from disturbed plots than from undisturbed plots (Disturbance, P<0.001), although a greater number of culturable bacteria and fungi were isolated from disturbed than from undisturbed soils (Disturbance, P<0.001). No UV‐B‐ or disturbance‐related differences in protein, starch or urea hydrolysis were exhibited by bacterial isolates. UV‐B treatment did not affect total plant biomass within undisturbed plots or the biomass of individual groupings of grasses, forbs and mosses. Per cent root length colonized by arbuscular mycorrhizal fungi (AMF) was not affected by enhanced UV‐B radiation in the undisturbed plots. Neither AMF nor plant biomass was measured in disturbed plots. The key findings of this study show that UV‐B‐mediated alterations in carbon utilization occurred in soil microbial communities subjected to disturbance, but such changes were not observed in communities sampled from undisturbed grassland. Differences in the catabolic potential of microbial communities from disturbed grassland subjected to enhanced UV‐B are probably related to plant‐mediated changes in resource availability or quality.  相似文献   

8.
Biological soil crusts (BSCs) are comprised of soil particles, bacteria, cyanobacteria, green algae, microfungi, lichens, and bryophytes and confer many ecosystem services in arid and semiarid ecosystems worldwide, including the highly threatened California sage scrub (CSS). These services, which include stabilizing the soil surface, can be adversely affected when BSCs are disturbed. Using field and greenhouse experiments, we tested the hypothesis that mechanical disturbance of BSC increases emergence of exotic vascular plants in a coastal CSS ecosystem. At Whiting Ranch Wilderness Park in southern California, 22 plots were established and emergence of exotic and native plants was compared between disturbed and undisturbed subplots containing BSC. In a separate germination study, seed fate in disturbed BSC cores was compared to seed fate in undisturbed BSC cores for three exotic and three native species. In the field, disturbed BSCs had significantly (>3×) greater exotic plant emergence than in undisturbed BSC, particularly for annual grasses. Native species, however, showed no difference in emergence between disturbed and undisturbed BSC. Within the disturbed treatment, emergence of native plants was significantly, and three times less than that of exotic plants. In the germination study, seed fates for all species were significantly different between disturbed and undisturbed BSC cores. Exotic species had greater emergence in disturbed BSC, whereas native plants showed either no response or a positive response. This study demonstrates another critical ecosystem service of BSCs—the inhibition of exotic plant species—and underscores the importance of BSC conservation in this biodiversity hotspot and possibly in other aridland ecosystems.  相似文献   

9.
Many systems are prone to both exotic plant invasion and frequent natural disturbances. Native species richness can buffer the effects of invasion or disturbance when imposed in isolation, but it is largely unknown whether richness provides substantial resistance against invader impact in the face of disturbance. We experimentally examined how disturbance (drought/burning) influenced the impact of three exotic invaders (Centaurea stoebe, Linaria dalmatica, or Potentilla recta) on native abundance across a gradient of species richness, using previously constructed grassland assemblages. We found that invaders had higher cover in experimentally disturbed plots than in undisturbed plots across all levels of native species richness. Although exotic species varied in cover, all three invaders had significant impacts on native cover in disturbed plots. Regardless of disturbance, however, invader cover diminished with increasing richness. Invader impacts on native cover also diminished at higher richness levels, but only in undisturbed plots. In disturbed plots, invaders strongly impacted native cover across all richness levels, as disturbance favoured invaders over native species. By examining these ecological processes concurrently, we found that disturbance exacerbated invader impacts on native abundance. Although diversity provided a buffering effect against invader impact without disturbance, the combination of invasion and disturbance markedly depressed native abundance, even in high richness assemblages.  相似文献   

10.
Logging and wildfire are significant anthropogenic disturbance agents in tropical forests. We compared the abundance and species richness of selected terrestrial wildlife taxa including small mammals, amphibians, reptiles, and terrestrial invertebrates in areas burned by wildfire and then logged and in adjacent undisturbed areas of a tropical humid forest in Bolivia. Disturbed areas had 24% less canopy cover than undisturbed areas but had 2.6 times the cover of large woody debris. Understory cover did not differ between disturbed and undisturbed areas. Small mammal abundance and species richness in disturbed areas were 43 and 70% higher, respectively, than in adjacent undisturbed areas. Herpetofaunal abundance did not differ significantly among disturbed and undisturbed areas, but trends for higher abundance were observed for both reptiles and amphibians in disturbed areas. Herpetofaunal species richness was significantly higher in disturbed compared to undisturbed areas. Total terrestrial invertebrate abundance, as estimated by pitfall traps, was significantly higher in undisturbed compared to disturbed areas mostly due to higher abundances of Formicidae and Blattidae. However, two invertebrate groups, Orthoptera and Lepidoptera (larvae) were more abundant in disturbed areas. Wildlife conservation strategies for areas where logging or wildfire occur should take into account species- or guild-specific responses to these disturbance agents.  相似文献   

11.
Plant species effects on ecosystem processes are mediated by traits such as litter quality and exudation. These same traits also influence the activity and distribution of animals that play key roles in regulating ecosystem dynamics. We planted monocultures of eight plant species commonly found in California grasslands to investigate the relative importance of plant species direct effects on nitrogen cycling, versus their indirect effects mediated by plant interactions with gophers. Plant species differed in their litter C:N ratio, which closely related to species effects on rates of net mineralization and nitrification in undisturbed soil. However, the effect of selective gopher disturbance on N cycling greatly altered these species effects.
Plant species differed in their effects on the type and timing of gopher disturbance. Small feeding holes were formed in late spring in plots containing species with high tissue quality. These feeding holes minimally disturbed the soil and did not alter N cycling rates over the short term. Large gopher mounds were formed in the winter and early spring, primarily in plots containing the grass, Aegilops triuncialis , and to a lesser extent in plots containing Avena barbata . These large mounds significantly disturbed the soil and greatly increased net nitrification rates, but had no consistent effects on net N mineralization. In undisturbed soil, Aegilops had the highest litter C:N ratio and one of the lowest rates of net nitrification. However, gophers preferentially built large mounds in Aegilops plots. Once the effects of gopher burrowing were considered, Aegilops had one of the highest rates of net nitrification, indicating that the indirect effects of plant species on N cycling can be more important than the direct effects alone. This experiment indicates that it is vital to consider interactions between plants and other organisms in order to predict the ecosystem effects of plant communities.  相似文献   

12.
Wetlands maintain biodiversity and provide numerous ecosystem services, so the pressure to perform successful restoration consequently is high. However, restoration projects rarely include an in-depth assessment of wetland potential for recovery, and restoration techniques may not be tailored to site-specific concerns. This study examined the seed bank of disturbed wetlands slotted for hydrologic, but not vegetation, restoration to determine if a seed bank comparable to that of nearby undisturbed wetlands persisted despite long-term anthropogenic disturbance. We compared the aboveground vegetation and seed bank compositions under drained, drawdown, and flooded conditions between undisturbed and historically ditched (“disturbed”) wetlands. Disturbed and undisturbed wetlands shared fewer than 30 % of total aboveground species. While undisturbed wetlands were dominated by graminoids, disturbed wetlands had greater cover of forbs. The seed banks of disturbed wetlands had high species diversity, but their composition was dissimilar to that of nearby undisturbed wetlands. In total, the seed banks of both disturbance histories germinated 56 species; drained conditions had the fewest germinants while flooded conditions had the most. Germinant richness was significantly affected by disturbance, moisture, and their interaction; evenness was significantly affected by moisture, and Shannon diversity by disturbance. Because the seed bank of disturbed wetlands included many fast-growing wetland plants, passive vegetation restoration and active hydrologic restoration may result in wetlands overgrown with weedy species and with fewer conservative wetland plants. An understanding of the capacity for seed banks to re-vegetate wetlands post-restoration and approximate undisturbed wetlands is crucial to the overall success of restoration projects.  相似文献   

13.
The effects of disturbance by recreational activities (trampling) on changes in soil organic matter (SOM) and on mycorrhizal roots of seedlings and mature trees were studied in four stands of a beech (Fagus sylvatica L.) forest near Basel, Switzerland. At each site, comparable disturbed and undisturbed plots were selected. Disturbance reduced ground cover vegetation and leaf litter. Beech seedlings had lower biomass after disturbance. Ergosterol concentration in seedling roots, an indicator of mycorrhizal fungi, was lower in two of the four disturbed plots compared to undisturbed plots; these two disturbed sites had especially low litter levels. Based on ergosterol measurements, mycorrhizas of mature trees did not appear to be negatively affected by trampling. Total fine roots and SOM were higher in the disturbed than in the undisturbed plots at three sites. At the fourth site, fine roots and SOM in the disturbed areas were lower than in the undisturbed areas most probably due to nutrient input following picnic activities. Principal component analysis revealed a close correlation between SOM and fine roots of mature trees as well as litter and seedling biomass. Trampling due to recreational activities caused considerable damage to the vegetation layer and in particular to the beech seedlings and their mycorrhizal fine roots, whereas, roots of mature trees were apparently resilient to trampling.  相似文献   

14.
How plant communities are structured, and the relative roles of gradients and disturbances in that structuring, has long been of interest. Here I use plots in replicate tallgrass, mixedgrass, and shortgrass prairies across Northern Oklahoma to address this issue by sampling plant percent cover three years after applying treatments realizing common prairie disturbances of burning, grazing, and soil turnover. I found (1) shortgrass plots had the least amount of aboveground biomass (AGB), with burning and soil turnover plots also having low AGB in the other two prairies, (2) tallgrass plots had the most total cover, with soil turnover plots having the least in the other two prairies, (3) tallgrass plots had the most species, with soil turnover plots having the least in the other two prairies, (4) control plots in mixedgrass had the smallest evenness and plots in shortgrass had the highest, and (5) a high degree of functional similarity in all three prairies. In addition to controlling these different aspects of population and community structure in prairies, results also show that the most severe disturbances can lead to a prairie plant composition and structure more similar to that found in the drier, most western prairie areas.  相似文献   

15.
Disturbances in semiarid environments have revealed a strong connection between water, salt and vegetation dynamics highlighting how the alteration of water fluxes can drive salt redistribution process and long-term environmental degradation. Here, we explore to what extent the reciprocal effect, that of salt redistribution on water fluxes, may play a role in dictating environmental changes following disturbance in dry woodlands. We assessed salt and water dynamics comparing soil-solution electrical conductivity, chloride concentration, soil water content (SWC) and soil matric and osmotic water potential (Ψm, Ψos) between disturbed and undisturbed areas. A large pool of salts and chlorides present in undisturbed areas was absent in disturbed plots, suggesting deep leaching. Unexpectedly, this was associated with slight but consistently lower SWC in disturbed versus undisturbed situations during two growing seasons. The apparent paradox of increased leaching but diminishing SWC after disturbance can be explained by the effect of native salt lowering Ψos enough to prevent full soil drying. Under disturbed conditions, the onset of deep drainage and salt leaching would raise Ψos allowing a decline of Ψm and SWC. Soil water storage seems to be modulated by the presence (under natural conditions) and partial leaching (following selective shrub disturbance) of large salt pools. This counterintuitive effect of disturbances may be important in semiarid regions where deep soil salt accumulation is a common feature. Our results highlight the importance of water–salt–vegetation coupling for the understanding and management of these systems.  相似文献   

16.
Despite widespread acknowledgment that disturbance favors invasion, a hypothesis that has received little attention is whether non-native invaders have greater competitive effects on native plants in undisturbed habitats than in disturbed habitats. This hypothesis derives from the assumption that competitive interactions are more persistent in habitats that have not been recently disturbed. Another hypothesis that has received little attention is whether the effects of non-native plants on native plants vary among habitats that differ in soil fertility. We documented habitat occurrences of 27 non-native plant species and 377 native plant species encountered in numerous study plots in a broad sample of ecosystems in MS (USA). We then reviewed experimental and regression-based field studies in the scientific literature that specifically examined potential competitive (or facilitative) effects of these non-native species on native species and characterized the habitats in which effects were the greatest. As expected, the non-native species examined here in general were more likely to be associated with severely disturbed habitats than were the native species as a group. In contrast, we found that non-native species with competitive effects on natives were more likely to be associated with undisturbed habitats than with disturbed habitats. When longer term studies involving more resident species were given more weight in the analysis, competitive effects appeared to be the greatest in undisturbed habitats with low soil fertility. These results reinforce the notion that invasion is not synonymous with impact. The environmental conditions that promote invasion may limit competitive effects of invaders on native plant communities following invasion.  相似文献   

17.
人为干扰对鼎湖山马尾松林种群动态的影响   总被引:26,自引:1,他引:25  
通过处理(根据当地居民习惯收割凋落物和林下)和保护(停止人为干扰,无任何人类活动)样地的比较在五年内(9190-1995年)研究了人为干扰对鼎湖山马尾松林植物种群动态的影响。结果表明,保护样地的林下层和灌木层盖度逐年上升,而处理样地相对较稳定。保护样地的草本层盖度略上升至1992年后,呈显著下降的变化,处理样地的变化则与保护样地的相反。保护样地的林下层植物种数逐年下降(从1990年的41种降至1995年的30种,减少11种),处理样地变化不大(从1990年的36种降至1995年的34种,仅减少2种)。小径级(≤13cm)的马尾松胸径增长速率保护样地高于处理样地,且径级越小,增长速率越大,然而,径级大于13cm的植株,则没有显示出这种规律性的变化。以上现象表明,适度的人为干扰对稀疏马尾松林的自然更新及林下植物种类多样笥具有一定的维持或促进作用,但不利于马尾松的生长。同时对稀疏马尾松-灌木-草本群落在停止人为干扰后的演替途径作了预测和探讨。  相似文献   

18.
茂县土地岭植被恢复过程中物种多样性动态特征   总被引:20,自引:3,他引:17  
植被恢复是退化生态系统重建的重要途径,植被恢复过程物种多样性的变化反映了植被的恢复程度.通过群落调查和多样性分析,研究了岷江上游土地岭植被恢复过程中群落物种多样性特征.结果表明: 恢复过程中6类不同类型群落分别表现其对于不同环境特征、干扰及更新方式等的响应;森林是较灌丛更适合当地环境状况的植被类型;人工恢复无干扰和轻度干扰群落的多样性相对较高,是较好的恢复模式.重度干扰使得1年生植物与地下芽植物比例增加,其它口食性较好的多年生草本减少.较强的干扰是群落无法更新、长期处于灌丛阶段且多样性较低的重要原因.本地区人工恢复群落在更新进程和多样性维持上优于自然更新群落,种植华山松加速了本地区植被演替进程.建议以适合恢复区域的多种恢复配置方式进行造林,并避免较强干扰,可以加速群落演替进程并保持恢复群落较高的物种丰富度与多样性.  相似文献   

19.
The length of time and form in which disturbances persist in systems depends on the intensity and frequency of disturbance and on the abilities of resident species to recover from such events. In grazed grasslands, trampling by large mammalian herbivores can periodically facilitate weed establishment by exposing patches of bare ground but whether an intense soil disturbance event results in a temporary increase in weed abundance or a persistent weed problem remains unclear. In May 2002, cattle trampling following heavy rain caused severe damage to nine-month old, rotationally grazed, cool-season pastures (Midwest USA). In September 2002, we compared the aboveground composition of paddocks (i.e., fenced pasture sections) that were heavily disturbed to those that received no damage. Relative to undisturbed paddocks, forage species relative cover was 17% lower in disturbed paddocks, and weed species and bare ground relative cover was 61% and 100% higher, respectively. By September 2004, paddock types did not differ in all aboveground community components. However, the abundance and species richness of weed seeds in the soil seed bank averaged respectively 82% and 30% higher in disturbed paddocks between 2003 and 2004. These findings indicate that a spatially extensive, intense soil disturbance event may soon become undetectable in components of aboveground pasture structure but can persist as an augmented weed seed bank. Because of high weed seed bank longevity, disturbances to formerly disturbed pastures would likely result in higher weed recruitment, with more species represented, than in those which lack previous disturbance. Disturbance history may thus be a useful predictor of weed community composition following subsequent disturbance. Based on empirical data supporting this proposition, we recommend that grassland managers explicitly incorporate disturbance history into dynamic management planning and do not rely exclusively on aboveground characters to evaluate the invasion status or colonization potential of an area by undesirable plants. We emphasize that the ecological legacies of past soil disturbance events cannot only influence the contemporary patterns and processes of grasslands, but importantly, affect their compositional trajectories following subsequent perturbation.  相似文献   

20.
Seagrasses are among the Earth''s most efficient and long-term carbon sinks, but coastal development threatens this capacity. We report new evidence that disturbance to seagrass ecosystems causes release of ancient carbon. In a seagrass ecosystem that had been disturbed 50 years ago, we found that soil carbon stocks declined by 72%, which, according to radiocarbon dating, had taken hundreds to thousands of years to accumulate. Disturbed soils harboured different benthic bacterial communities (according to 16S rRNA sequence analysis), with higher proportions of aerobic heterotrophs compared with undisturbed. Fingerprinting of the carbon (via stable isotopes) suggested that the contribution of autochthonous carbon (carbon produced through plant primary production) to the soil carbon pool was less in disturbed areas compared with seagrass and recovered areas. Seagrass areas that had recovered from disturbance had slightly lower (35%) carbon levels than undisturbed, but more than twice as much as the disturbed areas, which is encouraging for restoration efforts. Slow rates of seagrass recovery imply the need to transplant seagrass, rather than waiting for recovery via natural processes. This study empirically demonstrates that disturbance to seagrass ecosystems can cause release of ancient carbon, with potentially major global warming consequences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号