首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The adaptation ofCamellia rusticana, an evergreen broad-leaved shrub found in areas of heavy snowfall in Japan, to heavy snowfall environments, and the mechanisms by which it is damaged in winter above the snow, were investigated. The stomatal response and photosynthetic characteristics ofC. rusticana were compared to those ofCamellia japonica found in areas of light snowfall. In field conditions, the mean net photosynthesis ofC. rusticana at photon flux density (PFD) over 200 μmol m−2s−1 (Pn(>200). was 50% larger than that ofC. japonica, but in both light saturated and CO2 saturated conditions, the O2 evolution rate (Pc) ofC. rusticana was not different from that ofC. japonica. Mean leaf conductance at PFD over 200 μmol m−2s−1 (gl(>200)) was about 100% larger than that ofC. japonica in the field. The Pn(>200)) was 50% ratio ofC. rusticana was 37% higher than that ofC. japonica which suggests thatC. rusticana's larger Pn(>200) can be explained by its larger gl(>200). WhenC. rusticana trees wintering underneath the snow were projected above it, the leaves of these plants showed serious drought within five days in non-freezing conditions. Their Pc and the maximum stomatal conductance decreased by half and did not recover. The leaves ofC. rusticana showed larger gl(>200) and a less sensitive stomatal response to the decrease of leaf water potential than that ofC. japonica. The stomata characteristics ofC. rusticana caused larger net photosynthesis than that ofC. japonica during the no snow period, and caused the need for snow cover in winter as protector from winter drought.  相似文献   

2.
Eight chloroplast markers were developed from Japanese and snow camellia (Camellia japonica and C. rusticana). Six markers were based on mononucleotide repeats, while the other two resulted from indels of larger units. Polymorphisms were screened using 15 individuals from all over the Japanese archipelago, including C. japonica, C. japonica var. macrocarpa, C. japonica var. hozanensis, and C. rusticana. Polymorphisms within a single population were searched in 22 and 26 individuals of C. japonica and C. rusticana, respectively. The number of alleles per locus ranged from two to three, resulting in eight haplotypes, two of which were specific to C. rusticana. No polymorphisms were detected within a single population for both C. japonica and C. rusticana. The eight markers developed in the present study will be useful for analyzing the genetic diversity and tracing maternal origins of Japanese and snow camellias.  相似文献   

3.
4.
Aucuba japonica , an evergreen broad-leaved shrub. Aucuba Japonica var. borealis is widely distributed in heavy snowfall areas in Japan and is covered, shaded and physically pressured by snow for more than four months of the year. On the other hand, var. japonica is widely distributed in light snowfall areas. The sizes of new shoots and leaves were significantly different between the two varieties with different critical shoot sizes for flowering. The average new shoot dry mass of var. borealis was about one third of that of var. japonica. Despite the differences in growing conditions and shoot size, no significant differences were observed in the allometry of their shoot organs between the two varieties. Large new shoots had thicker and longer stems per biomass than small shoots because of their larger pith volume. The large shoots showed higher efficiency of stem growth per invested biomass and had a higher rate of annual height increase than small shoots. When the size of new shoot rapidly increased from year to year, i.e. the plants are growing well, initiation of flowering was postponed and vegetative growth continued. Small new shoots were tolerant of low productivity conditions but traded vertical growth for an increase in matter allocation to leaves. Received 8 July 1999/ Accepted in revised form 1 September 2000  相似文献   

5.
Plant adaptation to an environment subject to heavy snowfalls was investigated in four species of evergreen shrubs growing in a Fagus crenata forest in an area of Honshu on the Sea of Japan. These shrubs stored carbohydrates in some organs before the snowy season and were covered with snow for 4–5 months. Aucuba japonica var. borealis, Camellia rusticana, and Ilex crenata var. paludosa maintained a reserve of carbohydrates during the snowy season. In Daphniphyllum macropodum var. humile, the reserve of carbohydrates decreased during winter. The respiration rates in the first three species decreased from autumn to winter, whereas the decrease in D. macropodum was slight. It was found that the first three species could use reserve carbohydrates for the growth of new shoots after the thaw, whereas in the last species the growth of new shoots depends on high photosynthetic activity in late spring. Our findings suggest some types of matter economy in evergreen shrubs for wintering in an environment of heavy snow.  相似文献   

6.
The Arctic climate is projected to change during the coming century, with expected higher air temperatures and increased winter snowfall. These climatic changes might alter litter decomposition rates, which in turn could affect carbon (C) and nitrogen (N) cycling rates in tundra ecosystems. However, little is known of seasonal climate change effects on plant litter decomposition rates and N dynamics, hampering predictions of future arctic vegetation composition and the tundra C balance. We tested the effects of snow addition (snow fences), warming (open top chambers), and shrub removal (clipping), using a full-factorial experiment, on mass loss and N dynamics of two shrub tissue types with contrasting quality: deciduous shrub leaf litter (Salix glauca) and evergreen shrub shoots (Cassiope tetragona). We performed a 10.5-month decomposition experiment in a low-arctic shrub tundra heath in West-Greenland. Field incubations started in late fall, with harvests made after 249, 273, and 319 days of field incubation during early spring, summer and fall of the next year, respectively. We observed a positive effect of deeper snow on winter mass loss which is considered a result of observed higher soil winter temperatures and corresponding increased winter microbial litter decomposition in deep-snow plots. In contrast, warming reduced litter mass loss during spring, possibly because the dry spring conditions might have dried out the litter layer and thereby limited microbial litter decomposition. Shrub removal had a small positive effect on litter mass loss for C. tetragona during summer, but not for S. glauca. Nitrogen dynamics in decomposing leaves and shoots were not affected by the treatments but did show differences in temporal patterns between tissue types: there was a net immobilization of N by C. tetragona shoots after the winter incubation, while S. glauca leaf N-pools were unaltered over time. Our results support the widely hypothesized positive linkage between winter snow depth and litter decomposition rates in tundra ecosystems, but our results do not reveal changes in N dynamics during initial decomposition stages. Our study also shows contrasting impacts of spring warming and snow addition on shrub decomposition rates that might have important consequences for plant community composition and vegetation-climate feedbacks in rapidly changing tundra ecosystems.  相似文献   

7.
Examination by scanning electron microscopy showed abaxial stomata on in vitro cultured apple (Malus pumila Mill.) leaves. With leaf ontogeny, most of these stomata appeared to lose their regulatory ability while developing wide vestibules of up to 20 m in diameter. It is proposed that these deformed stomata may be a possible cause for the excessive transpirational water loss and consequent dehydration associated with transferring plants regenerated in vitro from culture.  相似文献   

8.
The occurrence of photoinhibition of photosynthesis in leaves of a willow canopy was examined by measuring the chlorophyll-a fluorescence ratio of F V/F M (FM is the maximum fluorescence level of the induction curve, and FV is the variable fluorescence, F V=F MF 0, where F0 is the minimal fluorescence). The majority of the leaves situated on the upper parts of peripheral shoots showed an afternoon inhibition of this ratio on clear days. This was the consequence of both a decrease in F M and a rise in F O. In the same leaves the diurnal variation in intercepted photosynthetic photon flux density (PPFD) was monitored using leaf-mounted sensors. Using the multivariate method, partial least squares in latent variables, it is shown that the dose of PPFD, integrated and linearly weighted over the last 6-h period, best predicts photoinhibition. Photoinhibition occurred even among leaves that did not intercept PPFDs above 1000 mol·m–2·s–1. Exposure of leaves to a standard photoinhibitory treatment demonstrated that the depression in the F V/F M ratio was paralleled by an equal depression in the maximal quantum yield of CO2 uptake and a nearly equal depression in the rate of bending (convexity) of the light-response curve of CO2 uptake. As a result, the rate of net photosynthesis is depressed over the whole natural range of PPFD. By simulating the daily course in the rate of net photosynthesis, it is estimated that in the order of one-tenth of the potential carbon gain of peripheral willow shoots is lost on clear days as a result of photoinhibition. This applies to conditions of optimal temperatures. Photoinhibition is even more pronounced at air temperatures below 23° C, as judged from measurements of the FV/FM ratio on clear days: the afternoon inhibition of this ratio increased in a curvilinear manner from 15% to 25% with a temperature decrease from 23° to 14° C.Abbreviations and Symbols FO minimum fluorescence - FV variable fluorescence - FM maximum fluorescence - PLS partial least squares in latent variables - PPFD photosynthetic photon flux density - VPD water vapour-pressure deficit This study was supported by the Swedish Natural Science Research Council. We are indebted to Dr. Jerry Leverenz (Department of Plant Physiology, University of Umeå, Sweden) for guidance with the modelling of the photosynthesis data.  相似文献   

9.
Growth correlations in leaves ofBryophyllum may be recognized by the development of marginal shoots varying in their particular lamina regions, the correlative inhibition increasing from the top to the base. Cytokinins extend their promoting action inB. crenatum leaves farther in the apical than in the basal direction. In the uppermost leaves ofB. daigremontianum they evoke the development of marginal shoots with flowers in the apical and of vegetative shoots in the basal region. Less suitable for this research are auxins, gibberellins, and triiodobenzoic acid which are unable to stimulate the development of marginal shoots on leaves grown out under short days if not supplemented by cytokinins. Only TIBA induces under long days formation of adventitious shoots directly from the lamina surface on leaves developed below the terminal ring fasciation exhibiting at free ends of connate leaves normal marginal shoots. Under short days a complete reduction of lateral teeth takes place inB. verticillatum both on the extremity of ring fasciation and on the uppermost leaves, the marginal shoots being formed under the subsequent long days only in the angles between the ring fasciation parts. Furthermore the correlative inhibition of the leaf causes anisophylly in marginal shoots in the same way as that of axillaries inBryophyllum.  相似文献   

10.
To know to what extent reproductive shoots are autonomous in Camellia sasanqua, we manipulated the sink-source balance between the reproductive shoots and their adjacent shoots by selecting vegetative or reproductive adjacent shoots, or defoliating the reproductive shoots, and photosynthetically labeled adjacent shoots with 13C. The atom% of 13C did not increase in the unlabeled shoots that had leaves, whereas that in the defoliated, unlabeled shoot was significantly increased. These results indicated that the pattern of translocation of photoassimilates to adjacent reproductive shoots occurs depending on the sink-source balance between shoots.  相似文献   

11.
Glutamine synthetase (GS) localized in the chloroplasts, GS2, is a key enzyme in the assimilation of ammonia (NH3) produced from the photorespiration pathway in angiosperms, but it is absent from some coniferous species belonging to Pinaceae such as Pinus. We examined whether the absence of GS2 is common in conifers (Pinidae) and also addressed the question of whether assimilation efficiency of photorespiratory NH3 differs between conifers that may potentially lack GS2 and angiosperms. Search of the expressed sequence tag database of Cryptomeria japonica, a conifer in Cupressaceae, and immunoblotting analyses of leaf GS proteins of 13 species from all family members in Pinidae revealed that all tested conifers exhibited only GS1 isoforms. We compared leaf NH3 compensation point (γNH3) and the increments in leaf ammonium content per unit photorespiratory activity (NH3 leakiness), i.e. inverse measures of the assimilation efficiency, between conifers (C. japonica and Pinus densiflora) and angiosperms (Phaseolus vulgaris and two Populus species). Both γNH3 and NH3 leakiness were higher in the two conifers than in the three angiosperms tested. Thus, we concluded that the absence of GS2 is common in conifers, and assimilation efficiency of photorespiratory NH3 is intrinsically lower in conifer leaves than in angiosperm leaves. These results imply that acquisition of GS2 in land plants is an adaptive mechanism for efficient NH3 assimilation under photorespiratory environments.  相似文献   

12.
Biosynthesis of Purine Alkaloids in Camellia Plants   总被引:2,自引:0,他引:2  
The metabolism of [8-14C]adenine and [8-14C]hypoxanthine infour species of Camellia plants was investigated in relationto the synthesis of purine alkaloids, caffeine and theobromine.Young leaves of C. sinensis had the ability to synthesize caffeine,but in C. irrawadiensis, these labelled precursors were incorporatedinto theobromine, not caffeine. No synthesis of purine alkaloidscould be detected in C. japonica and C. sasanqua leaves. Conventional"salvage" and degradation pathways of purines were present inall species of Camellia plants examined. 1 Present address: Research Center, Mitsubishi Chemical IndustriesLtd., 1000 Kamisida-cho, Midori-ku, Yokohama, 227 Japan. (Received September 29, 1986; Accepted January 22, 1987)  相似文献   

13.
Stomatal opening on Vicia faba can be induced by high CO2 partial pressures (10.2%) in dark as well as in light. Stomatal aperture was measured in both cases with a hydrogen porometer. The distribution of 14C among early products of photosynthesis was studied. Comparisons are made with carboxylations occurring when stomata were open in the dark with CO2-free air and in light with 0.034% CO2. Results showed that in high CO2 partial pressure in light, less radioactivity was incorporated in Calvin cycle intermediates and more in sucrose. carboxylations and photorespiration seemed to be inhibited. In the dark in both CO2 conditions, 14C incorporation was found in malate and aspartate but also in serine and glycerate in high CO2 conditions. In light these changes in metabolic pathways may be related with the deleterious effects recorded on leaves after long-term expositions to high partial pressure of CO2.Abbreviations DHAP dihydroxyacetone phosphate - PEP phosphonenolpyruvate - PEPCK phosphonenolpyruvatecarboxykinase - PGA 3-phosphoglyceric acid - RUBPc ribulose 1,5-bisphosphate carboxylase  相似文献   

14.
为探究不同生境下金花茶组植物的叶片钙形态特征,该研究以10种石灰土生境和4种酸性土生境的金花茶为对象,测定了其生境土壤的钙含量和pH值,以及该生境下金花茶组植物叶中的硝酸钙和氯化钙、水溶性有机酸钙、果胶酸钙、磷酸钙和碳酸钙、草酸钙、硅酸钙和总钙的含量。结果表明:(1)石灰土生境的土壤钙含量和土壤pH均极显著(P<0.01)高于酸性土。(2)在石灰土生境中,金花茶组植物的叶钙形态以草酸钙(41.17%)为主,而在酸性土生境中则以果胶酸钙(43.10%)为主,除硝酸钙和氯化钙、果胶酸钙外,石灰土金花茶的各叶钙形态和总钙含量均极显著(P<0.01)高于酸性土金花茶。(3)相关性分析结果显示,大部分叶钙形态含量与土壤pH和土壤钙含量呈极显著(P<0.01)正相关,表明土壤环境对金花茶组植物叶钙形态特征具有重要影响。(4)单因素方差分析结果显示,各叶钙形态含量在物种间存在极显著(P<0.01)差异,表明金花茶组植物在物种分化过程中叶钙形态特征具有多样性。(5)基于叶钙形态特征的聚类分析显示,14种金花茶可归为3大类。总体而言,不同生境背景下金花茶组植物的叶钙形态差异可能是...  相似文献   

15.
The lower foliar photosynthetic rates seen in shoots in the upper crowns of tall trees than those in seedlings could be caused by extrinsic factors, such as hydraulic conductance, for shoots or by irreversible intrinsic change in the meristems during tree development. To clarify which is most significant, we compared foliar gas exchange characteristics and water relations among scions of Japanese cedar (Cryptomeria japonica D. Don) grafted into the upper crowns of tall trees, rooted cuttings developed from scions of the same clones, and intact shoots in the upper crowns of the tall trees. Grafted shoots had the same water regime as intact shoots, as confirmed by their similar water potentials at the turgor loss point, which were more negative than those of the rooted cuttings. No significant difference was observed between the grafted and intact shoots in their light-saturated photosynthetic rate (Pmax), stomatal conductance (gs), photosynthetic capacity, carboxylation efficiency, ratio of intercellular to ambient CO2 concentration (Ci/Ca), and carbon isotope composition (13C). Compared with the rooted cuttings, the grafted shoots showed significantly lower Pmax, gs, photosynthetic capacity, and carboxylation efficiency (to 49%, 31%, 68%, and 65%, respectively). The Ci/Ca and 13C indicated significantly stronger instantaneous and long-term stomatal limitation in the grafted shoots than in the rooted cuttings. These indicate that changes in extrinsic factors can reduce foliar photosynthetic rates in shoots in the upper crowns of tall trees as a result of stronger stomatal limitation and reduced photosynthetic activity, without irreversible intrinsic changes in the meristems.  相似文献   

16.
Leaves taken from micropropagated shoots of several apple (Malus domestica Borkh.) cultivars were cultured in vitro on Linsmaier & Skoog (LS) medium or the rice anther culture medium of Chu et al. (N6) containing various concentrations of either benzyladenine (BA) or thidiazuron (TDZ) plus naphthaleneacetic acid (NAA). Of the TDZ concentrations tested, 10 M was most effective and it was equivalent to, or better than, 22 M BA for both the percentage of leaves regenerating shoots and number of shoots formed per regenerating leaf in almost every experiment. Lower concentrations of NAA (1.1 and 5.4 M) gave best results with both BA and TDZ. N6 medium gave consistently better results than LS. Lowering total salt concentration or total N concentration of LS to that of N6 did not improve the response nor did changing the NO3:NH4 ratio. The 3–4 leaves on the most distal part of the shoot were most responsive and tended to form the most adventitious shoots. Placing the leaf cultures in the dark for the first 2–3 weeks of the culture period produced the best results. Optimum results were obtained by culturing leaves from the distal part of the shoot in the dark for 2 weeks on N6 medium containing 10 M TDZ and 1.1 or 5.4 M NAA, then moving the cultures to 16 h daylight at a photon flux of 60 mol s-1m-2.  相似文献   

17.
Summary Adventitious shoots of Cydonia oblonga Quince A were obtained from leaves cultured on MS-N6 medium containing thidiazuron (TDZ) and -naphthaleneacetic acid (NAA). The frequency of regeneration was high (78% of the cultured leaves with 3.2 shoots per regenerating leaf) at 32 M TDZ plus 0.3 M NAA on young leaves obtained from micropropagated shoots. Shoots were rooted by culturing them first on medium containing 5 M NAA for one week and then on auxinfree medium for four weeks. The regeneration protocol may be useful for selection of somaclonal variants with increased tolerance to low Fe and for transformation mediated by Agrobacterium.  相似文献   

18.
Isotype analyses were performed on biochemical fractions isolated from leaves of Kalanchoe blossfeldiana Tom Thumb. during aging under long days or short days. Irrespective of the age or photoperiodic conditions, the intermediates of the starch-malate sequence (starch, phosphorylated compounds and organic acids) have a level of 13C higher than that of soluble sugars, cellulose and hemicellulose. In short days, the activity of the crassulacean acid metabolism pathway is predominant as compared to that of C3 pathway: leaves accumulate organic acids, rich in 13C. In long days, the activity of the crassulacean acid metabolism pathway increases as the leaves age, remaining, however, relatively low as compared to that of C3 pathway: leaves accumulate soluble sugars, poor in 13C. After photoperiodic change (long daysshort days), isotopic modifications of starch and organic acids suggest evidence for a lag phase in the establishment of the crassulacean acid metabolism pathway specific to short days. The relative proportions of carbon from a C3-origin (RuBPC acitivity as strong discriminating step, isotope discrimination in vivo=20) or C4-origin (PEPC activity as weak discriminating step, isotope discrimination in vivo=4) present in the biochemical fractions were calculated from their 13C values. Under long days, 30 to 70% versus 80 to 100% under short days, of the carbon of the intermediates linked to the starch-malate sequence, or CAM pathway (starch, phosphorylated compounds and organic acids), have a C4-origin. Products connected to the C3 pathway (free sugars, cellulose, hemicellulose) have 0 to 50% of their carbon, arising from reuptake of the C4 from malate, under long days versus 30 to 70% under short days.Abbreviations CAM crassulacean acid metabolism - CAM pathway pathway with malate accumulation by -carboxylation of PEP, arising from glycolysis of starch (starch-malate sequence) - C3-metabolism metabolism with primary carbon fixed by the Calvin and Benson pathway (C3-origin) - C4-metabolism metabolism with primary carbon fixed by the Hatch and Slack pathway (C4-origin) - C3-pathway pathway with RuBPC activity and the Calvin and Benson pathway, irrespective of the CO2-source, atmospheric or reuptake of the C4 from malate - 13C()=(Rsample-RPDR)103/RPDB where PDB Pee Dee belemnite (belemnite from the Pee Dee formation, South Carolina) and R=13C/12C - D isotope discrimination - PEP phosphoenolpyruvate - PEPC (EC 4.1.1.31) PEP carboxylase - PGA phosphoglyceric acid - Py.di-PK (EC 2.7.9.1) pyruvate, Pi-dikinase - RuBP ribulose bisphosphate - RuBPC (EC 4.1.1.39) RuBP carboxylase - SD short days - LD long days  相似文献   

19.
Protoplast isolation from apple leaf tissue of in-vitro cultured shoots is possible if very young leaves from buds are used. Digestible leaves are found in apple shoots of the subculture kerö 14 days after transferring the shoot and of M26 some days later.The yield of protoplasts is considerably improved if the apple shoots are cultured in a medium containing L-methionine (0.5 mM).  相似文献   

20.
Aucuba japonica varieties are common evergreen understory shrubs in Japan.Aucuba japonica var.borealis is distributed on the Sea of Japan side of Honshu and Hokkaido where heavy snow cover lasts for more than 3 months in winter.Aucuba japonica var.japonica is distributed in areas with shallow or no snow on the Pacific Ocean side of Honshu and Shikoku. The ecophysiological characteristics of var.borealis were compared with those of var.japonica to examine the effects of heavy and long-term snow cover on the life cycle of var.borealis. Shoots of both varieties were shaded in crushed ice for 110 days, but their photosynthetic activities, chlorophyll contents and the chlorophylla/b ratio was not affected. The leaves of var.borealis were no less frost tolerant than those of var.japonica. In spite of the difference in environmental factors, both varieties had similar characteristics in seasonal changes of photosynthesis, respiration and chlorophylla/b ratio. These results suggest that var.japonica could survive in areas with heavy snow where it does not normally occur. Leaf net production (LNP) was estimated based on the microclimatic data and seasonal photosynthetic and respiration rates. The difference in the annual LNP between the two varieties was equivalent to the difference in the LNP during the snow season. One of the major effects of snow cover is to interrupt and reduce the production period of var.borealis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号