首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The capacity of some Escherichia coli (E. coli) ribosomal proteins to bind to tRNA and to hydrolyse their aminoacylated derivatives has been analysed. The following results were obtained: (1) The basic proteins L2, L16 and L33 and S20 bound f[3H]Met-tRNA to a similar extent as the total proteins from 30 S (TP30) or 50 S (TP50) when tested by nitrocellulose filtration, in contrast to the more acidic proteins L7/L12 and S8. (2) The proteins of the peptidyltransferase centre, L2 and L16, showed no distinct specificity, binding various charged tRNAs from E. coli and Saccharomyces cerevisiae (S. cerevisiae). (3) A number of isolated ribosomal proteins hydrolysed aminoacyl-tRNA as assessed by trichloroacetic acid precipitation, in contrast to the TP30 and TP50. (4) The loss of radiolabel from Ac[14C]Phe-tRNA and from [14C]tRNA in the presence of these proteins could not be prevented by RNasin, a ribonuclease inhibitor, whereas that mediated by a sample of non-RNase-free bovine serum albumin was inhibited. (5) When double-labelled, Ac[3H]Phe-[14C]tRNA was incubated with L2 both radiolabels were lost, indicating that this potential candidate for a peptidyltransferase enzyme does not specifically cleave the ester bond between the aminoacyl residue and the tRNA.  相似文献   

2.
We report the purification of four proteins from Escherichia coli that stimulate or inhibit inter- and/or intramolecular recombination promoted by the yeast plasmid-encoded FLP protein. The proteins are identified as the ribosomal proteins S3 (27 kDa), L2 (26 kDa), S4 (24 kDa), and S5 (16 kDa), on the basis of N-terminal sequence analysis. The S3 protein is found to be identical to H protein, an E. coli histone-like protein that is related to histone H2A immunologically and by virtue of amino acid content. The H protein/S3 identity is based on co-migration on polyacrylamide gels, heat stability, amino acid analysis, and effects on FLP-promoted recombination. These results are relevant to current studies on the structure of the E. coli nucleoid. Since the H protein has previously been found associated with the E. coli nucleoid, the results indicate that either (a) some ribosomal proteins serve a dual function in E. coli, or, more likely, (b) ribosomal proteins can and are being mis-identified as nucleoid constituents.  相似文献   

3.
The naturally occurring nucleotide 3-(3-amino-3-carboxy-propyl)uridine (acp3U) at position 47 of tRNA(Phe) from Escherichia coli was modified with a diazirine derivative and bound to ribosomes in the presence of suitable mRNA analogues under conditions specific for the ribosomal A, P or E sites. After photo-activation at 350 nm the cross-links to ribosomal proteins and RNA were identified by our standard procedures. In the 30S subunit protein S19 (and weakly S9 and S13) was the target of cross-linking from tRNA at the A site, S7, S9 and S13 from the P site and S7 from the E site. Similarly, in the 50S subunit L16 and L27 were cross-linked from the A site, L1, L5, L16, L27 and L33 from the P site and L1 and L33 from the E site. Corresponding cross-links to rRNA were localized by RNase H digestion to the following areas: in 16S rRNA between positions 687 and 727 from the P and E sites, positions 1318 and 1350 (P site) and 1350 and 1387 (E site); in the 23S rRNA between positions 865 and 910 from the A site, 1845 and 1892 (P site), 1892 and 1945 (A site), 2282 and 2358 (P site), 2242 and 2461 (P and E sites), 2461 and 2488 (A site), 2488 and 2539 (all three sites) and 2572 and 2603 (A and P sites). In most (but not all) cases, more precise localizations of the cross-link sites could be made by primer extension analysis.  相似文献   

4.
The binding sites of ribosomal proteins L18 and L25 on 5S RNA from Escherichia coli were probed with ribonucleases A, T1, and T2 and a double helix specific cobra venom endonuclease. The results for the protein-RNA complexes, which were compared with those for the free RNA [Douthwaite, S., & Garrett, R. A. (1981) Biochemistry 20, 7301--7307], reveal an extensive interaction site for protein L18 and a more localized one for L25. Generally comparable results, with a few important differences, were obtained in a study of the binding sites of the two E. coli proteins on Bacillus stearothermophilus 5S RNA. Several protein-induced changes in the RNA structures were identified; some are possibly allosteric in nature. The two prokaryotic 5S RNAs were also incubated with total 50S subunit proteins from E. coli and B. stearothermophilus ribosomes. Homologous and heterologous reconstitution experiments were performed for both RNAs. The effects of the bound proteins on the ribonuclease digestion of the RNAs could generally be correlated with the results obtained with the E. coli proteins L18 and L25, although there was evidence for an additional protein-induced conformational change in the B. stearothermophilus 5S RNA, which may have been due to a third ribosomal protein L5.  相似文献   

5.
We have completed identification of all the ribosomal proteins (RPs) in spinach plastid (chloroplast) ribosomal 50 S subunit via a proteomic approach using two-dimensional electrophoresis, electroblotting/protein sequencing, high performance liquid chromatography purification, polymerase chain reaction-based screening of cDNA library/nucleotide sequencing, and mass spectrometry (reversed-phase HPLC coupled to electrospray ionization mass spectrometry and electrospray ionization mass spectrometry). Spinach plastid 50 S subunit comprises 33 proteins, of which 31 are orthologues of Escherichia coli RPs and two are plastid-specific RPs (PSRP-5 and PSRP-6) having no homologues in other types of ribosomes. Orthologues of E. coli L25 and L30 are absent in spinach plastid ribosome. 25 of the plastid 50 S RPs are encoded in the nuclear genome and synthesized on cytosolic ribosomes, whereas eight of the plastid RPs are encoded in the plastid organelle genome and synthesized on plastid ribosomes. Sites for transit peptide cleavages in the cytosolic RP precursors and formyl Met processing in the plastid-synthesized RPs were established. Post-translational modifications were observed in several mature plastid RPs, including multiple forms of L10, L18, L31, and PSRP-5 and N-terminal/internal modifications in L2, L11 and L16. Comparison of the RPs in gradient-purified 70 S ribosome with those in the 30 and 50 S subunits revealed an additional protein, in approximately stoichiometric amount, specific to the 70 S ribosome. It was identified to be plastid ribosome recycling factor. Combining with our recent study of the proteins in plastid 30 S subunit (Yamaguchi, K., von Knoblauch, K., and Subramanian, A. R. (2000) J. Biol. Chem. 275, 28455-28465), we show that spinach plastid ribosome comprises 59 proteins (33 in 50 S subunit and 25 in 30 S subunit and ribosome recycling factor in 70 S), of which 53 are E. coli orthologues and 6 are plastid-specific proteins (PSRP-1 to PSRP-6). We propose the hypothesis that PSRPs were evolved to perform functions unique to plastid translation and its regulation, including protein targeting/translocation to thylakoid membrane via plastid 50 S subunit.  相似文献   

6.
Ribosomal proteins were extracted from 30 S subunits of Halobacterium marismortui under native conditions.Their separation was based on gel filtration and hydrophobic chromatography, performed at a concentration of 3.2 M KC1 to avoid denaturation. A total of nine proteins were isolated, purified and identified by partial amino-terminal sequences and two-dimension a gel electrophoresis. There is a high degree of sequence homology with 30 S proteins from H. cutirubrum, and also some with 30 (S) proteins of eubacteria.Proton NMR data indicate unfolding of the proteins in low salt. One of the proteins, however, retains its secondary structure at a salt concentration as low as 0.1 M NaCl, and even in 8 M urea. One reason for this outstanding stability could be the high proportion (50%) of β-structure in this protein as determined from circular dichroism measurements. In general, there is a higher β-sheet content than for 30 S proteins from Escherichia coli. Measurements of Stokes radii indicate several of the proteins to have a rather elongated shape. One of these is a complex consisting of L3/L4 and L20, similar to the LI-complex from E. co&.The presence of this 50 S complex in the preparation of the small subunit suggests a location on the interface between the subunits.  相似文献   

7.
Ultraviolet irradiation (lambda = 254 nm) of ternary complexes of E. coli 70 S ribosomes with poly(U) and either Phe-tRNAPhe (in the A-site) or NAcPhe-tRNAPhe (in the P-site) effectively induces covalent linking of tRNA with a limited number of ribosomal proteins. The data obtained indicate that in both sites tRNA is in contact with proteins of both 30 S and 50 S subunits (S5, S7, S9, S10, L2, L6 and L16 proteins in the A-site and S7, S9, S11, L2, L4, L7/L12 and L27 proteins in the P-site). Similar sets of proteins are in contact with total aminoacyl-tRNA and N-acetylaminoacyl-tRNA. However, here no contacts of tRNA in the P-site with the S7 and L25/S17 proteins were revealed, whereas in the A-site total aminoacyl-tRNA contacts L7/L12. Proteins S9, L2 and, probably, S7 and L7/L12 are common to both sites.  相似文献   

8.
Escherichia coli and Salmonella typhimurium were grown in a supplemented minimal medium (SMM) at a pH of 7.0 or 5.0 or were shifted from pH 7.0 to 5.0. Two-dimensional gel electrophoretic analysis of proteins labeled with H2(35)SO4 for 20 min during the shift showed that in E. coli, 13 polypeptides were elevated 1.5- to 4-fold, whereas in S. typhimurium, 19 polypeptides were increased 2- to 14-fold over the pH 7.0 control. Upon long-term growth at pH 5.0, almost double the number of polypeptides were elevated twofold or more in S. typhimurium compared with E. coli. In E. coli, there was no apparent induction of heat shock proteins upon growth at pH 5.0 in SMM. However, growth of E. coli in a complex broth to pH 5.0, or subsequent growth of fresh E. coli cells in the filtrate from this culture, showed that a subset of five polypeptides is uniquely induced by low pH. Two of these polypeptides, D60.5, the inducible lysyl-tRNA synthetase, and C62.5, are known heat shock proteins. Measurements of the internal pH (pHi) and growth rates of both organisms were made during growth in SMM at pH 7.0, pH 5.0, and upon the pH shift. The data show that the pHi of E. coli decreases more severely than that of S. typhimurium at an external pH of 5.0; the growth rate of E. coli is about one-half that of S. typhimurium at this pH, whereas the two organisms have the same growth rate at pH 7.0. The two-dimensional gel, growth, and pHi experiments collectively suggest that, at least in SMM, S. typhimurium is more adaptive to low-pH stress than is E. coli.  相似文献   

9.
Escherichia coli and Salmonella typhimurium were grown in a supplemented minimal medium (SMM) at a pH of 7.0 or 5.0 or were shifted from pH 7.0 to 5.0. Two-dimensional gel electrophoretic analysis of proteins labeled with H2(35)SO4 for 20 min during the shift showed that in E. coli, 13 polypeptides were elevated 1.5- to 4-fold, whereas in S. typhimurium, 19 polypeptides were increased 2- to 14-fold over the pH 7.0 control. Upon long-term growth at pH 5.0, almost double the number of polypeptides were elevated twofold or more in S. typhimurium compared with E. coli. In E. coli, there was no apparent induction of heat shock proteins upon growth at pH 5.0 in SMM. However, growth of E. coli in a complex broth to pH 5.0, or subsequent growth of fresh E. coli cells in the filtrate from this culture, showed that a subset of five polypeptides is uniquely induced by low pH. Two of these polypeptides, D60.5, the inducible lysyl-tRNA synthetase, and C62.5, are known heat shock proteins. Measurements of the internal pH (pHi) and growth rates of both organisms were made during growth in SMM at pH 7.0, pH 5.0, and upon the pH shift. The data show that the pHi of E. coli decreases more severely than that of S. typhimurium at an external pH of 5.0; the growth rate of E. coli is about one-half that of S. typhimurium at this pH, whereas the two organisms have the same growth rate at pH 7.0. The two-dimensional gel, growth, and pHi experiments collectively suggest that, at least in SMM, S. typhimurium is more adaptive to low-pH stress than is E. coli.  相似文献   

10.
Affinity labeling of E. coli ribosomes with 4-[(N-2-chloroethyl)-N-methylamino] benzyl-5'-phosphamide of hexauridylate was studied within the complex containing tRNAPhe at P site and Phe-tRNAPhe at A site directed by EF-Tu and GTP. Ribosomal proteins as well as rRNA both in 30S and 50S subunits were found to be labelled within the complex. Labeled proteins were identified as S3, S9 and L2. Selectivity of affinity labeling with mRNA analogs was shown to depend on the functional state of the ribosomes. Modification was more selective within the complex stabilized by codon-anticodon interaction both at A and P-sites than within the complex in which this interaction takes place preferentially at P site.  相似文献   

11.
Nucleotide residues in E. coli tRNA(Phe) interacting directly with proteins in pre- and posttranslocated ribosomal complexes have been identified by UV-induced cross-linking. In the tRNA(Phe) molecule located in the Ab-site (pretranslocated complex) residues A9, G18, A26 and U59 are cross-linked with proteins S10, L27, S7 and L2, respectively. In tRNA(Phe) located in the Pt-site (posttranslocated complex) residues C17, G44, C56 and U60 are cross-linked with proteins L2, L5, L27 and S9, respectively. The same cross-links (except for G44-L5) have been found for tRNA in the Pb-site of the pretranslocated ribosomal complex. None of the tRNA(Phe) residues cross-linked with proteins in the complexes examined by us are involved in the stabilization of the secondary structure, but residues A9, G18, A26, G44 and C56 participate in stabilization of tRNA tertiary structure. Since translocation of tRNA(Phe) from Ab- to P-site is accompanied by changes of tRNA contacts with proteins L2 and L27, we postulate that this translocation is coupled with tRNA turn around the axis joining the anticodon loop with the CCA-end of the molecule. This is in agreement with the idea about the presence of a kink in mRNA between codons located in the ribosomal A- and P-sites. In all E. coli tRNAs with known primary structure positions 18 and 56, interacting with L27 protein, when tRNA is located either in A- or P-site, are invariant, whereas positions 17 and 60, interacting with proteins only when tRNA is in the P-site, are strongly conserved. In positions 9, 26 and 59 purines are the preferred residues. In most E. coli tRNAs deviations from the consensus in these three positions is strongly correlated.  相似文献   

12.
旨在检测嗜酸乳杆菌S-层蛋白以及S-层蛋白与抗生素联用对大肠杆菌(Escherichia coli)和金黄色葡萄球菌(Staphylococcus aureus)的抑制作用。采用液体发酵培养法获得嗜酸乳杆菌菌体,LiCl法提取S-层蛋白粗提物,凝胶过滤层析法纯化S-层蛋白,分别用E.coli和S.aureus处理Caco-2细胞2 h后,考察S-层蛋白在不同浓度和不同作用时间条件下对E.coli和S.aureus的抑制作用,并考察S-层蛋白联合抗生素对E.coli和S.aureus的抑制作用,实验分组:(1)空白对照;(2)嗜酸乳杆菌组;(3)S-层蛋白组;(4)抗生素组;(5)嗜酸乳杆菌+抗生素组;(6)S-层蛋白+抗生素组。结果显示,液体发酵得到嗜酸乳杆菌菌体,提取并纯化得到S-层蛋白;S-层蛋白对E.coli和S.aureus有很好的抑制效果,具有浓度依赖性,高浓度下抑制率达到42.2%和31.7%,差异极显著(P<0.01),且在E.coli和S.aureus作用的短时间内干预效果明显,0 h时的抑制率分别达到59.3%和48.4%;S-层蛋白联合抗生素的抑菌率分别达到81.7%和79.3%,差异极显著(P<0.01),效果优于单独使用抗生素。嗜酸乳杆菌S-层蛋白具有较强的抑菌作用,可以与抗生素联用,有望开发称为一种新型的抗菌药物。  相似文献   

13.
Assembly of the ribosome from its protein and RNA constituents has been studied extensively over the past 50 years, and experimental evidence suggests that prokaryotic ribosomal proteins undergo conformational changes during assembly. However, to date, no studies have attempted to elucidate these conformational changes. The present work utilizes computational methods to analyze protein dynamics and to investigate the linkage between dynamics and binding of these proteins during the assembly of the ribosome. Ribosomal proteins are known to be positively charged and we find the percentage of positive residues in r-proteins to be about twice that of the average protein: Lys+Arg is 18.7% for E. coli and 21.2% for T. thermophilus. Also, positive residues constitute a large proportion of RNA contacting residues: 39% for E. coli and 46% for T. thermophilus. This affirms the known importance of charge-charge interactions in the assembly of the ribosome. We studied the dynamics of three primary proteins from E. coli and T. thermophilus 30S subunits that bind early in the assembly (S15, S17, and S20) with atomic molecular dynamic simulations, followed by a study of all r-proteins using elastic network models. Molecular dynamics simulations show that solvent-exposed proteins (S15 and S17) tend to adopt more stable solution conformations than an RNA-embedded protein (S20). We also find protein residues that contact the 16S rRNA are generally more mobile in comparison with the other residues. This is because there is a larger proportion of contacting residues located in flexible loop regions. By the use of elastic network models, which are computationally more efficient, we show that this trend holds for most of the 30S r-proteins.  相似文献   

14.
Methylation of the 50S ribosomal proteins from Bacillus stearothermophilus, Bacillus subtilis, Alteromonas espejiana, and Halobacterium cutirubrum was measured after the cells were grown in the presence of [1-14C]methionine or [methyl-3H]methionine or both. Two-dimensional polyacrylamide gel electrophoretic analysis revealed, in general, similar relative electrophoretic mobilities of the methylated proteins from each eubacterium studied. Proteins known to be structurally and functionally homologous in several microorganisms were all methylated. Thus, the following group of proteins, which appear to be involved in peptidyltransferase or in polyphenylalanine-synthesizing activity in B. stearothermophilus (P.E. Auron and S. R. Fahnestock, J. Biol. Chem. 256:10105-10110, 1981), were methylated (possible Escherichia coli methylated homologs are indicated in parentheses): BTL5(EL5), BTL6(EL3), BTL8(EL10), BTL11(EL11), BTL13(EL7L12) and BTL20b(EL16). In addition, the pentameric ribosomal complex BTL13 X BTL8, analogous to the complex EL7L12 X EL10 of E. coli, contained methylated proteins. Analysis of the methylated amino acids in the most heavily methylated proteins, BSL11 from B. subtilis and BTL11 from B. stearothermophilus, showed the presence of epsilon-N-trimethyllysine as the major methylated amino acid in both proteins, in agreement with known data for E. coli. In addition, BSL11 appeared to contain trimethylalanine, a characteristic, modified amino acid previously described only in EL11 from E. coli. These results and those previously obtained from other bacteria indicate a high degree of conservation for ribosomal protein methylation and suggest an important, albeit unknown, role for the modification of these components in eubacterial ribosomes.  相似文献   

15.
Although a low resolution model for the arrangement of the proteins of the small and large ribosomal subunits is known, a detailed mechanistic understanding of the function of the ribosome awaits a high resolution structure of its components. While crystals have been obtained of several ribosomal proteins from Bacillus stearothermophilus, determination of atomic resolution structures of these proteins is impeded by the difficulty of obtaining large amounts of native proteins for crystallographic or NMR studies. We describe here the cloning and overexpression in Escherichia coli of the genes for ribosomal proteins S5, L6, L9, and L18 from B. stearothermophilus. S5 is extremely toxic to E. coli when overexpressed, and we have taken advantage of a new tightly regulated expression system to obtain high yields (more than 100 mg of pure protein/liter of culture) of this protein. The B. stearothermophilus S5 produced in E. coli crystallizes, and the crystals are identical to those obtained from the native protein. The crystals diffract to 2-A resolution.  相似文献   

16.
We recently described the use of reverse phase high performance liquid chromatography for the separation of the proteins of the 30 S subunit of Escherichia coli ribosomes (Kerlavage, A. R., Kahan, L., and Cooperman, B. S. (1982) Anal. Biochem. 123, 342-348). In the present studies we report improvements in the technique and its extension to the separation of the proteins of the 50 S subunit and of 70 S ribosomes. Using an octadecasilyl silica column and a trifluoroacetic acid/acetonitrile solvent system, the 21 proteins of the 30 S subunit have been resolved into 17 peaks, the 33 proteins of the 50 S subunit into 22 peaks, and the 53 proteins of the 70 S ribosome into 31 peaks. The proteins present in each peak have been identified by polyacrylamide gel electrophoresis, by comparison with previously standardized chromatograms, and by calibration with authentic samples of purified proteins. All of the known ribosomal proteins have been identified on the chromatograms with the exception of L31 and its variant, L31'. Three protein peaks, not corresponding to known ribosomal proteins, have been observed in preparations from the total protein from 50 S subunits and 70 S ribosomes, but the significance of these peaks is unclear. The reverse phase high performance liquid chromatography technique has the potential for purifying all ribosomal proteins, as demonstrated by the increase in resolution we obtain when a peak isolated under standard gradient conditions and containing several proteins is reapplied to the column and eluted with a shallower gradient. Its utility in preparing proteins for functional studies is demonstrated by a reconstitution of active 30 S particles using 30 S proteins prepared by reverse phase high performance liquid chromatography.  相似文献   

17.
Activated thiol-Sepharose (ATS) facilitates selection of thiol-containing proteins. In control- and menadione-treated Escherichia coli, batch selection performed under denaturing conditions revealed distinct two-dimensional electrophoresis (2DE) patterns. Using shotgun proteomics, 183 thiol-containing proteins were identified in control ATS-selected extracts and 126 were identified in menadione-treated E. coli, with 85 proteins being common to both. More than 90% of identified proteins contained one or more cysteines. Blocking with N-ethyl maleimide followed by reduction facilitated ATS-based selection of disulfide-containing proteins. In total, 62 proteins were unique to control cells and 164 were identified in menadione-treated E. coli cells, with 29 proteins being common to both. Proteins from menadione-treated cells were excised from 2DE gels, digested with trypsin, and identified by peptide mass fingerprinting. This revealed 19 unique proteins, 14 of which were identified by shotgun proteomics. Outer membrane proteins A, C, W, and X and 30S ribosomal protein S1 were found in 2DE but not by shotgun proteomics. Foldases, ribosomal proteins, aminoacyl transfer RNA (tRNA) synthetases, and metabolic and antioxidant enzymes were prominent among identified proteins, and many had previously been found to respond to, and be targets for, oxidative stress in E. coli. ATS provides a convenient and rapid way to select thiol-containing proteins.  相似文献   

18.
Phosphorylation of eukaryotic ribosomal proteins in vitro by essentially homogeneous preparations of cyclic AMP-dependent protein kinase catalytic subunit and cyclic GMP-dependent protein kinase was compared. Each protein kinase was added at a concentration of 30nM. Ribosomal proteins were identified by two-dimensional gel electrophoresis. Almost identical results were obtained when ribosomal subunits from HeLa or ascites-tumour cells were used. About 50-60% of the total radioactive phosphate incorporated into small-subunit ribosomal proteins by either kinase was associated with protein S6. In 90 min between 0.7 and 1.0 mol of phosphate/mol of protein S6 was incorporated by the catalytic subunit of cyclic AMP-dependent protein kinase. Of the other proteins, S3 and S7 from the small subunit and proteins L6, L18, L19 and L35 from the large subunit were predominantly phosphorylated by the cyclic AMP-dependent enzyme. Between 0.1 and 0.2 mol of phosphate was incorporated/mol of these phosphorylated proteins. With the exception of protein S7, the same proteins were also major substrates for the cyclic GMP-dependent protein kinase. Time courses of the phosphorylation of individual proteins from the small and large ribosomal subunits in the presence of either protein kinase suggested four types of phosphorylation reactions: (1) proteins S2, S10 and L5 were preferably phosphorylated by the cyclic GMP-dependent protein kinase; (2) proteins S3 and L6 were phosphorylated at very similar rates by either kinase; (3) proteins S7 and L29 were almost exclusively phosphorylated by the cyclic AMP-dependent protein kinase; (4) protein S6 and most of the other proteins were phosphorylated about two or three times faster by the cyclic AMP-dependent than by the cyclic GMP-dependent enzyme.  相似文献   

19.
20.
5S RNA-protein complexes were prepared in vitro using partially purified E. coli 5S RNA and total E. coli 70S ribosomal proteins. The complexes were isolated from sucrose gradients and shown to contain proteins L5, L18, L25 and a fourth protein not heretofore characterized and designed L31. The complexes were treated with the crosslinking reagents dimethyl suberimidate and dimethyl-3,3'-dithiobispropionimidate. Both reagents gave identical patterns of crosslinked proteins when analyzed by one-dimensional polyacrylamide/dodecylsulfate gel electrophoresis. Dimers of L5-L31', L5-L18 and L18-L18 and a trimer containing L5, L18 and L31' were identified by diagonal polyacrylamide/dodecylsulfate gel electrophoresis of the proteins crosslinked with dimethyl-3,3'-dithiobispropionimidate. No crosslinking was detected between L25 and the other three proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号