首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The intercalating drugs possess a planar aromatic chromophore unit by which they insert between DNA bases causing the distortion of classical B-DNA form. The planar tricyclic structure of anthraquinones belongs to the group of chromophore units and enables anthraquinones to bind to DNA by intercalating mode. The interactions of simple derivatives of anthraquinone, quinizarin (1,4-dihydroxyanthraquinone) and danthron (1,8-dihydroxyanthraquinone), with negatively supercoiled and linear DNA were investigated using a combination of the electrophoretic methods, fluorescence spectrophotometry and single molecule technique an atomic force microscopy. The detection of the topological change of negatively supercoiled plasmid DNA, unwinding of negatively supercoiled DNA, corresponding to appearance of DNA topoisomers with the low superhelicity and an increase of the contour length of linear DNA in the presence of quinizarin and danthron indicate the binding of both anthraquinones to DNA by intercalating mode.  相似文献   

2.
Interactions of certain intercalating cationic ligands with nucleic acids result in the formation of products that undergo condensation and agglomeration; this transition in solution can be monitored by light-scatter measurements. In the present study, using such intercalators as the antitumor drug mitoxantrone or fluorochromes acridine orange and quinacrine, we induced condensation of DNA in situ in Chinese hamster chromosomes. The in situ products scattered light and could be detected by darkfield- or phase-contrast microscopy. In the darkfield the complexes had a characteristic granular appearance and often generated a banding pattern on the chromosomes. In contrast, condensation of DNA in situ by the nonintercalating polyvalent cations (Co3+, spermine4+), while enhancing the chromosome's image contrast, did not produce the granular products or the banding. The condensation of free DNA, single or double stranded, natural or synthetic, the latter of various base composition and configuration, was also measured in solution. The condensation in solution and in situ was observed at similar concentrations of the respective ligands. The intercalating dye ethidium bromide, which did not condense DNA in solutions of moderate and high ionic strength, also did not generate the granular products or banding on chromosomes. The data also show that both base composition and configuration are important factors in determining the sensitivity of DNA to condensation by particular intercalating ligands. The studies suggest that the phenomenon of DNA condensation by intercalating dyes, which shows a high degree of specificity with respect to primary and secondary structures of DNA, may be associated with mechanisms of chromosome banding induced by the intercalating thiazine dyes in Giemsa staining or by quinacrine. Observation of chromosome banding based on light-scatter detection in darkfield microscopy allows the study of interactions between DNA and the ligands that neither fluoresce nor generate colored products. This principle of chromosome "counter-staining" can be explored by flow cytometry.  相似文献   

3.
The helical repeat of underwound DNA in solution.   总被引:1,自引:0,他引:1       下载免费PDF全文
Closed circular DNA was relaxed with a topoisomerase in the presence of varying concentrations of the intercalating dye, ethidium bromide, to create underwound, planar DNA rings. We directly determined the helical repeat of these DNA molecules by the Gaussian center method and found that it varied as a simple predicted function of the degree of underwinding and the helical repeat of relaxed, dye-free DNA. We discuss these results in light of a recent mathematical treatment of DNA structure which predicts that the helical repeat of supercoiled DNA molecules in solution obeys the same function.  相似文献   

4.
Following the initial report of the use of SYBR Green I for real-time polymerase chain reaction (PCR) in 1997, little attention has been given to the development of alternative intercalating dyes for this application. This is surprising considering the reported limitations of SYBR Green I, which include limited dye stability, dye-dependent PCR inhibition, and selective detection of amplicons during DNA melting curve analysis of multiplex PCRs. We have tested an alternative to SYBR Green I and report the first detailed evaluation of the intercalating dye SYTO9. Our findings demonstrate that SYTO9 produces highly reproducible DNA melting curves over a broader range of dye concentrations than does SYBR Green I, is far less inhibitory to PCR than SYBR Green I, and does not appear to selectively detect particular amplicons. The low inhibition and high melting curve reproducibility of SYTO9 means that it can be readily incorporated into a conventional PCR at a broad range of concentrations, allowing closed tube analysis by DNA melting curve analysis. These features simplify the use of intercalating dyes in real-time PCR and the improved reproducibility of DNA melting curve analysis will make SYTO9 useful in a diagnostic context.  相似文献   

5.
Lipid vesicles with incorporated ion channels from polyene antibiotic amphotericin B were used to investigate structures of planar membranes formed by Shindler's techniques. A planar membrane assembled on the aperture in a lavsan film from two layers generated at the air-aqueous liposome suspension interface is not a simple bilayer but a bimolecular membrane containing numerous partly fused liposomes. A complete fusion of liposomal membranes with the planar bilayer is an unlikely event during membrane formation. A planar bimolecular lipid membrane without incorporated liposomes can be made by a method consisting of three stages: formation of a lipid layer on the air-water interface of a suspension containing liposomes, transfer of this layer along the surface of the solution into a chamber containing a solution without liposomes where a lipid monomolecular layer forms gradually (within about 20 min) at the air-water interface, assembling of the planar bilayer membrane from this monolayer. The knowledge of the planar membrane structure may be useful in experiments on incorporation of membrane proteins into a planar lipid bilayer.  相似文献   

6.
Neocarzinostatin chromophore binds to deoxyribonucleic acid by intercalation   总被引:11,自引:0,他引:11  
The nonprotein chromophore of neocarzinostatin was found to share many of the characteristics of classical intercalators in its interaction with DNA. Viscosity studies with PM2 DNA indicated that the DNA helix unwinding induced by the chromophore was 0.82 times that of ethidium or 21 degrees. Electric dichroism of the chromophore--DNA complex showed that each bound chromophore molecule lengthened DNA by 3.3 A and that absorbance transitions of the chromophore at 315--385 nm were oriented approximately parallel to DNA bases, as expected for an intercalated aromatic ring. Binding to DNA induced strong hypochromicity and a pronounced red shift in the absorbance spectrum of the chromophore. Spectrophotometric titrations suggested at least two types of chromophore binding sites on DNA; one type of site was saturated at rb = 0.125 chromophore molecule/nucleotide, but binding to additional sites continued to at least rb = 0.3. These physical--chemical studies were performed at pH 4--5 in order to keep the chromophore stable, but chromophore bound to an excess of DNA at pH 7 showed a stable absorbance spectrum identical with that seen at pH 4--5, suggesting that a similar type of binding occurs at neutral pH. Chromophore which had spontaneously degraded in pH 8 buffer did not bind to DNA at all, as judged by absorbance spectroscopy. The degree of protection afforded by DNA against spontaneous chromophore degradation implied a dissociation constant of approximately 5 microM for the DNA--chromophore complex at neutral pH and physiological ionic strength. Supercoiled DNA was nearly twice as effective as relaxed DNA in protecting chromophore from degradation, providing additional evidence for intercalation at neutral pH. Comparison of absorbance, fluorescence, and dichroism spectra suggests that the naphthalene ring system is the intercalating moiety.  相似文献   

7.
A Carrier  P Le Ber  C Auclair 《Biochemistry》1990,29(25):6002-6009
A spin-label (P-OPC) composed of the nitroxide-containing ring proxyl linked at the C1 position of the intercalating fluorescent chromophore oxazolopyridocarbazole (OPC) has been synthesized. The spin-labeled OPC was found to interact with DNA and polynucleotides according to an external minor groove binding mode with association constant values Kapp ranging from 10(5) to 10(6) M-1. External binding was obvious from the inability of P-OPC to increase the length of sonicated DNA upon binding, the low unwinding angle (9.6 degrees) of circular PM2 DNA, and the low energy transfer from DNA bases to bound chromophore. Binding of P-OPC to DNA or polynucleotide results in a strong immobilization of the proxyl moiety, resulting in the appearance of an asymmetric and broad ESR spectrum with a maximal hyperfine splitting of 56.5 G. In the equilibrium conditions, the occurrence of superimposed ESR spectra related to the P-OPC fraction undergoing rapid motion and to the P-OPC fraction immobilized allows the estimation of the concentrations of free and DNA-bound spin-label. The external mode of binding to DNA as well as the characteristics of the ESR spectra make P-OPC suitable for the determination of DNA binding parameters of nonintercalating ligands using competition experiments. The measurement of the binding constants of distamycin A to poly[d(A-T)] and poly[d(G-C)] is taken as an example.  相似文献   

8.
Bovine pulmonary surfactant protein C (SP-C) is a hydrophobic, alpha-helical membrane-associated lipoprotein in which cysteines C4 and C5 are acylated with palmitoyl chains. Recently, it has been found that the alpha-helix form of SP-C is metastable, and under certain circumstances may transform from an alpha-helix to a beta-strand conformation that resembles amyloid fibrils. This transformation is accelerated when the protein is in its deacylated form (dSP-C). We have used infrared spectroscopy to study the structure of dSP-C in solution and at membrane interfaces. Our results show that dSP-C transforms from an alpha-helical to a beta-type amyloid fibril structure via a pH-dependent mechanism. In solution at low pH, dSP-C is alpha-helical in nature, but converts to an amyloid fibril structure composed of short beta-strands or beta-hairpins at neutral pH. The alpha-helix structure of dSP-C is fully recoverable from the amyloid beta-structure when the pH is once again lowered. Attenuated total reflectance infrared spectroscopy of lipid-protein monomolecular films showed that the fibril beta-form of dSP-C is not surface-associated at the air-water interface. In addition, the lipid-associated alpha-helix form of dSP-C is only retained at the surface at low surface pressures and dissociates from the membrane at higher surface pressures. In situ polarization modulation infrared spectroscopy of protein and lipid-protein monolayers at the air-water interface confirmed that the residual dSP-C helix conformation observed in the attenuated total reflectance infrared spectra of transferred films is randomly or isotropically oriented before exclusion from the membrane interface. This work identifies pH as one of the mechanistic causes of amyloid fibril formation for dSP-C, and a possible contributor to the pathogenesis of pulmonary alveolar proteinosis.  相似文献   

9.
Multivalent protein binding plays an important role not only in biological recognition but also in biosensor preparation. Infrared reflection absorption spectroscopy and surface plasmon resonance techniques have been used to investigate concanavalin A (Con A) binding to binary monolayers composed of 1,2-di-O-hexadecyl-sn-glycerol and derived glycolipids with the mannose moieties. The glycolipids in the binary monolayers at the air-water interface underwent both lateral rearrangement and molecular reorientation directed by Con A in the subphase favorable to access of the carbohydrate ligands to protein binding pockets for the formation of multivalent binding sites and the minimization of steric crowding of neighboring ligands for enhanced binding. The amounts of specifically bound proteins in the binary monolayers at the air-water interface were accordingly increased in comparison with those in the initially immobilized monolayers at the air-water interface. The directed rearranged binary monolayers with multivalent protein binding were preserved for the preparation of biosensors.  相似文献   

10.
Surface pressure isotherms and structural and surface dilatational properties of three hydroxypropylmethycelluloses (HPMCs, called E4M, E50LV, and F4M) adsorbed films at the air-water interface were determined. In this work we present evidence that HPMC molecules are able to diffuse and saturate the air-water interface at very low concentrations in the bulk phase. As bulk concentration increased, structural changes at a molecular level occurred at the interface. These changes corresponded to transition from an expanded structure (structure I) to a condensed one (structure II). When the surface concentration of HPMC was high enough, the collapse of the monolayer was observed. The three HPMCs formed very elastic films at the air-water interface, even at low surface pressures. E4M showed features that make it unique. For instance it showed the highest surface activity, mainly at low bulk concentrations (<10(-4) wt %). The differences observed in surface activity may be attributed to differences in the hydroxypropyl molar substitution and molecular weight of HPMC. All three HPMCs formed films of similar viscoelasticity and elastic dilatational modulus, which can be accounted for by their similar degree of methyl substitution.  相似文献   

11.
We have used hydroxyapatite (HA) chromatography and S1 nuclease hydrolysis to study the modification in the secondary structure of DNA caused by certain intercalating and non-intercalating ligands. The principal conclusions of HA experiments were as follows: (1) when native DNA, complexed with drugs believed to bind to DNA by intercalation (ethidium bromide, acridine orange, actinomycin D and acriflavin), is chromatographed on HA a lower affinity of DNA for HA is observed; also, the DNA elutes from HA columns as a drug-DNA complex; (ii) ligands that are known to interact with DNA by surface interactions do not show these effects; (iii) it may be possible to quantitate the binding of the intercalating drug to DNA and to determine its degree of binding by HA chromatography. Possibly, intercalation causes a change in the configuration of the sugarphosphate backbone of DNA, resulting in an altered steric orientation or 'burial' of phosphate groups with reduced availability for surface interactions with HA. S1 nuclease was used to determine the thermal melting profiles of DNA complexed with ethidium bromide and acridine orange. The melting profile in both cases was found to be biphasic with considerably reduced denaturation even at 95 degrees C. This is accounted for by the property of intercalating agents of stabilizing the secondary structure of DNA and the reported preference in binding to G-C base pairs.  相似文献   

12.
Y G Gao  Y C Liaw  H Robinson  A H Wang 《Biochemistry》1990,29(45):10307-10316
The three-dimensional molecular structures of the complexes between a novel antitumor drug nogalamycin and its derivative U-58872 with a modified DNA hexamer d[m5CGT(pS)Am5CG] have been determined at 1.7- and 1.8-A resolution, respectively, by X-ray diffraction analyses. Both structures (in space group P6(1)) have been refined with constrained refinement procedure to final R factors of 0.208 (3386 reflections) and 0.196 (2143 reflections). In both complexes, two nogalamycins bind to the DNA hexamer double helix in a 2:1 ratio with the elongated aglycon chromophore intercalated between the CpG steps at both ends of the helix. The aglycon chromophore spans across the GC Watson-Crick base pairs with its nogalose lying in the minor groove and the aminoglucose lying in the major groove of the distorted B-DNA double helix. Most of the sugars remain in the C2'-endo pucker family, except three deoxycytidine residues (terminal C1, C7, and internal C5). All nucleotides are in the anti conformation. Specific hydrogen bonds are found in the complex between the drug and guanine-cytosine bases in both grooves of the helix. One hydroxyl group of the aminoglucose donates a hydrogen bond to the N7 of guanine, while the other receives a hydrogen bond from the N4 amino group of cytosine. The orientation of these two hydrogen bonds suggests that nogalamycin prefers a GC base pair with its aglycon chromophore intercalating at the 5'-side of a guanine (between NpG), or at the 3'-side of a cytosine (between CpN) with the sugars pointing toward the GC base pair. The binding of nogalamycin to DNA requires that the base pairs in DNA open up transiently to allow the bulky sugars to go through, suggesting that nogalamycin prefers GC sequences embedded in a stretch of AT sequences.  相似文献   

13.
The rates of dissociation of three non-intercalative unsymmetrical cyanine dyes, BEBO, BETO and BOXTO from mixed-sequence DNA have been studied with the DNA either free in solution or in confining porous agarose gels. The properties of the new dyes were compared to the related intercalating dyes BO, BO-PRO, TO-PRO and YO-PRO. With DNA in solution, BEBO dissociates more slowly than the monovalent BO and interestingly also more slowly than the divalent dye BO-PRO. Similarly, both BETO and BOXTO exhibit considerably slower dissociation than TO-PRO. The new dyes show biexponential dissociation kinetics in mixed-sequence DNA. The average rate of dissociation increases with increasing ionic strength, but the salt dependence of the dissociation is weaker than for the corresponding intercalating dye. The rate of dye-dissociation decreases by a factor of about 105 in the gel. The rates for the dyes generally follow the pattern that we observe with the DNA in free solution, however a more accentuated stabilization was seen for intercalators than for groove-bound dyes. The results show that, in particular, BOXTO is a promising candidate as a preferentially groove-bound DNA-stain with a large enhancement of the fluorescence quantum yield upon binding to DNA, and which exhibits slow and salt-insensitive dissociation compared to corresponding intercalative dyes.  相似文献   

14.
PicoGreen is a very sensitive fluorescent dye for quantitative assays of double-stranded DNA (dsDNA) in solution and is used in several analytical protocols in which sensitive and precise DNA detection is needed, also for examination of drug-DNA interactions. The data shown in this paper indicate that compounds intercalating to DNA influence the applicability of PicoGreen dye for quantitative measurements of dsDNA, and for this reason PicoGreen dye is not suitable for examination of drug-DNA interactions, especially interstrand DNA crosslinks.  相似文献   

15.
The effect of ligand binding upon the buoyant density of DNA in Nycodenz gradients has been studied using DNAs of differing base compositions. The effect of both intercalating ligands (ethidium bromide and proflavin) and non-intercalating ligands (distamycin A, DAPI and netropsin) has been studied. The binding of intercalating ligands to DNA has essentially no effect on the buoyant density of DNA in Nycodenz gradients. The non-intercalating ligands were found to increase the buoyant density of DNA in a base specific manner. The increase in buoyant density can be interpreted in terms of disruption of the hydration shell of the DNA molecule caused by the binding of the ligand along the minor groove of the DNA helix.  相似文献   

16.
We have characterized the surface activity of different-sized poly(ethylene-glycols) (PEG; M(r) 200-100,000 Da) in the presence or absence of lipid monolayers and over a wide range of bulk PEG concentrations (10(-8)-10% w/v). Measurements of the surface potential and surface pressure demonstrate that PEGs interact with the air-water and lipid-water interfaces. Without lipid, PEG added either to the subphase or to the air-water interface forms relatively stable monolayers. Except for very low molecular weight polymers (PEGs < 1000 Da), low concentrations of PEG in the subphase (between 10(-5) and 10(-4)% w/v) increase the surface potential from zero (with respect to the potential of a pure air-water interface) to a plateau value of approximately 440 mV. At much higher polymer concentrations, > 10(-1)% (w/v), depending on the molecular weight of the PEG and corresponding to the concentration at which the polymers in solution are likely to overlap, the surface potential decreases. High concentrations of PEG in the subphase cause a similar decrease in the surface potential of densely packed lipid monolayers spread from either diphytanoyl phosphatidylcholine (DPhPC), dipalmitoyl phosphatidylcholine (DPPC), or dioleoyl phosphatidylserine (DOPS). Adding PEG as a monolayer at the air-water interface also affects the surface activity of DPhPC or DPPC monolayers. At low lipid concentration, the surface pressure and potential are determined by the polymer. For intermediate lipid concentrations, the surface pressure-area and surface potential-area isotherms show that the effects due to lipid and PEG are not always additive and that the polymer's effect is distinct for the two lipids. When PEG-lipid-mixed monolayers are compressed to surface pressures greater than the collapse pressure for a PEG monolayer, the surface pressure-area and surface potential-area isotherms approach that of the lipid alone, suggesting that for this experimental condition PEG is expelled from the interface.  相似文献   

17.
Glycosylated indolocarbazoles related to the antibiotic rebeccamycin represent an important series of antitumor drugs. In the course of structure-activity relationship studies, we report the synthesis of two new derivatives containing an indolo[2,3-c]carbazole chromophore instead of the conventional indolo[2,3-a]carbazole unit found in the natural metabolites. The N-methylated compound 8 containing one glucose residue behaves as a typical DNA intercalating agent, as judged from circular and electric linear dichroism measurements with purified DNA. In contrast, the bis-glycosylated derivative 7 containing a glucose residue on each indole nitrogen has lost its capacity to form stable complexes with DNA. DNA relaxation experiments reveal that the two drugs 7 and 8 have weak effects on human DNA topoisomerase I. The modified conformation of the indolocarbazole chromophore is detrimental to the stabilization of topoisomerase I-DNA complexes. The lack of potent topoisomerase I inhibition leads to decreased cytotoxicity but, however, we observed that the DNA-intercalating mono-glycosyl derivative 8 is about 5 times more cytoxic than the bis-glycosyl analogue 7. The study suggests that the naturally-occurring indolo[2,3-a]carbazole skeleton should be preserved to maintain the topoisomerase I inhibitory and cytotoxic activities.  相似文献   

18.
The transition from alpha-helix to random coil of the titrating polyamino acid co-poly-L-(lysine, phenylalanine), (p-(Lys,Phe)), has been investigated as a function of pH and ionic strength in aqueous solution and at the air-water interface by means of circular dichroism (CD) spectroscopy and the Langmuir surface film balance technique. The results strongly suggest that the helix-coil transition for peptides at the air-water interface can be determined by using the two-dimensional Flory exponent, nu, to express the pH dependent peptide surface conformation. The helix-coil titration curve of p-(Lys,Phe) shifts approximately 2.5 pH units towards lower pH at the air-water interface, as compared with the bulk solution. This finding is of relevance for the understanding of conformation and conformational changes of membrane-transporting and membrane penetrating peptides as well as for the use of peptides in molecular devices.  相似文献   

19.
Study of the relaxation kinetics of the interaction of ethidium and DNA reveals a novel and potentially important general binding mechanism, namely direct transfer of the ligand between DNA binding sites without requiring dissociation to free ligand. The measurable relaxation spectrum shows three relaxation times, indicating that three bound dye species are present at equilibrium; about 80% of the dye is in the major intercalated form. For each relaxation the reciprocal relaxation time varies linearly with concentration up to very high DNA concentrations. The failure of the longer relaxation times to plateau at high concentration can be accounted for by including a bimolecular pathway for conversion from one complex form to another. This we envisage as direct transfer of an ethidium molecule, bound to one DNA molecule, to an empty binding site on another DNA molecule. Additional evidence for this direct transfer mechanism was obtained from an experiment showing that DNA (which binds ethidium relatively rapidly) accelerates the binding of ethidium to poly(rA) · poly(rU), presumably by first forming a DNA-ethidium complex and then transferring the ethidium to RNA. The bimolecular rate constant for transfer is found to be about four times larger than the constant for intercalating the free dye. The transfer pathway thus provides a highly efficient means for the ligand to equilibrate over its DNA binding sites, especially at high polymer concentration. The potential importance of direct transfer for DNA-binding regulatory proteins is emphasized.  相似文献   

20.
Addition of the intercalating dye ethidium bromide (EtdBr) to a solution of alkali-denatured double-stranded closed circular PM2, ΦX174, or λb2b5c phage DNAs, under conditions such that the solution remains strongly alkaline, can result in the renaturation of up to 100% of the DNA upon neutralization of the solution. For a fixed time of incubation of the alkaline dye-containing solution before neutralization, there exists a minimum concentration of the dye below which no EtdBr-mediated renaturation is observed for each species of closed circular DNA examined. These minimum concentrations increase, for a given DNA, with increasing ionic strength and temperature. The kinetics of accumulation of forms renaturing upon neutralization of alkaline solutions, at fixed concentrations of dye and DNA, are dependent upon the molecular weight and superhelix density of the starting DNA. After extended periods of incubation at a fixed ionic strength and temperature, however, the profiles of percentage of DNA renatured as a function of ethidium concentration become very similar for all the closed circular DNAs tested and display a transition from an absence of dye-mediated renaturation to virtually 100% renaturation upon neutralization over a small range of dye concentration. Circular DNA containing one or more strand scissions remains strand-separated under all the conditions used to effect the renaturation of closed circular DNA. These findings indicate that configurations of closed circular DNA, in which at least some of the complementary bases are apposed, can be selectively stabilized and accumulate in the presence of ethidium in solutions containing 0.19 N hydroxide ion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号