共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Xu KY 《Biochemical and biophysical research communications》2005,338(4):1669-1677
Enzymes catalyze essential chemical reactions needed for living processes. (Na+ +K+)-ATPase (NKA) is one of the key enzymes that control intracellular ion homeostasis and regulate cardiac function. Little is known about activation of NKA and its biological impact. Here we show that native activity of NKA is markedly elevated when protein-protein interaction occurs at the extracellular DVEDSYGQQWTYEQR (D-R) region in the alpha-subunit of the enzyme. The apparent catalytic turnover of NKA is approximately twice as fast as the controls for both ouabain-resistant and ouabain-sensitive enzymes. Activation of NKA not only markedly protects enzyme function against denaturing, but also directly affects cellular activities by regulating intracellular Ca2+ transients and inducing a positive inotropic effect in isolated rat cardiac myocytes. Immunofluorescent labeling indicates that the D-R region of NKA is not a conventional digitalis-binding site. Our findings uncover a novel activation site of NKA that is capable of promoting the catalytic function of the enzyme and establish a new concept that activating of NKA mediates cardiac contraction. 相似文献
3.
Influence of certain fish meals on (Na+ + K+)-ATPase and Ca2+-ATPase activity in rat small intestine
E Rebolledo-Varela M C Taboada-Montero A Lamas-MAneiros M P Fernández-Otero 《Revista Espanola de Fisiología》1983,39(2):197-201
The effect of high-protein content fish meal on (Na+ + K+)-ATPase and Ca2+-ATPase activity in rat small intestine was studied. 5 groups of Wistar rats, weighing between 40-60 g, were fed diets with 12% protein content of dry matter for 10 days. The protein source was casein for the control group and fish meal derived from Coryphaenoides rupestris, Chimaera monstruosa and Merluccius merluccius for the test group. The results show a decrease in (Na+ + K+)-ATPase and a rise in Ca2+-ATPase activity in animals fed with fish meal protein compared to those fed on casein. No significant variations were observed between the groups fed on fish meal derived from C. rupestris and Ch. monstruosa. The calcium ion, which is abundant in fish, may be a factor responsible for these variations which produce inhibition of the (Na+ + K+)-ATPase and stimulation of the Ca2+-ATPase. 相似文献
4.
Crystallization patterns of membrane-bound (Na+ +K+)-ATPase 总被引:6,自引:0,他引:6
Extensive formation of two-dimensional crystals of the proteins of the pure membrane-bound (Na+ +K+)-ATPase is induced during prolonged incubation with vanadate and magnesium. Some membrane crystals are formed in medium containing magnesium and phosphate. Computer-averaged images of the two-dimensional crystals show that the unit cell in vanadate-induced crystals contains a protomeric alpha beta-unit of the enzyme protein. In phosphate-induced crystals an (alpha beta) 2-unit occupies one unit cell suggesting the interactions between alpha beta-units can be of importance in the function of the Na+, K+ pump. 相似文献
5.
In experiments performed at 37 degrees C, Ca2+ reversibly inhibits the Na+-and (Na+ + K+)-ATPase activities and the K+-dependent phosphatase activity of (Na+ + K+)-ATPase. With 3 mM ATP, the Na+-ATPase was less sensitive to CaCl2 than the (Na+ + K+)-ATPase activity. With 0.02 mM ATP, the Na+-ATPase and the (Na+ + K+)-ATPase activities were similarly inhibited by CaCl2. The K0.5 for Ca2+ as (Na+ + K+)-ATPase inhibitor depended on the total MgCl2 and ATP concentrations. This Ca2+ inhibition could be a consequence of Ca2+-Mg2+ competition, Ca . ATP-Mg . ATP competition or a combination of both mechanisms. In the presence of Na+ and Mg2+, Ca2+ inhibited the K+-dependent dephosphorylation of the phosphoenzyme formed from ATP, had no effect on the dephosphorylation in the absence of K+ and inhibited the rephosphorylation of the enzyme. In addition, the steady-state levels of phosphoenzyme were reduced in the presence both of NaCl and of NaCl plus KCl. With 3 mM ATP, Ca2+ alone sustained no more than 2% of the (Na+ + K+)-ATPase activity and about 23% of the Na+-ATPase activity observed with Mg2+ and no Ca2+. With 0.003 mM ATP, Ca2+ was able to maintain about 40% of the (Na+ + K+)-ATPase activity and 27% of the Na+-ATPase activity seen in the presence of Mg2+ alone. However, the E2(K)-E1K conformational change did not seem to be affected. Ca2+ inhibition of the K+-dependent rho-nitrophenylphosphatase activity of the (Na+ + K+)-ATPase followed competition kinetics between Ca2+ and Mg2+. In the presence of 10 mM NaCl and 0.75 mM KCl, the fractional inhibition of the K+-dependent rho-nitrophenylphosphatase activity as a function of Ca2+ concentration was the same with and without ATP, suggesting that Ca2+ indeed plays the important role in this process. In the absence of Mg2+, Ca2+ was unable to sustain any detectable ouabain-sensitive phosphatase activity, either with rho-nitrophenylphosphate or with acetyl phosphate as substrate. 相似文献
6.
M G Luthra 《Biochimica et biophysica acta》1982,692(2):271-277
Trifluoperazine dihydrochloride-induced inhibition of calmodulin-activated Ca2+ -ATPase and calmodulin-insensitive (Na+ +K+)- and Mg2+ -ATPase activities of rat and human red cell lysates and their isolated membranes was studied. Trifluoperazine inhibited both calmodulin-sensitive and calmodulin-insensitive ATPase activities in these systems. The concentration of trifluoperazine required to produce 50% inhibition of calmodulin-sensitive Ca2+ -ATPase was found to be slightly lower than that required to produce the same level of inhibition of other ATPase activities. Drug concentrations which inhibited calmodulin-sensitive ATPase completely, produced significant reduction in calmodulin-insensitive ATPases as well. The data presented in this report suggest that trifluoperazine is slightly selective towards calmodulin-sensitive Ca2+ -ATPase but that it is also capable of inhibiting calmodulin-insensitive (Na+ +K+)-ATPase and Mg2+ -ATPase activities of red cells at relatively low concentrations. Thus the action of the drug is not due entirely to its interaction with calmodulin-mediated processes, and trifluoperazine cannot be assumed to be a selective inhibitor of calmodulin interactions under all circumstances. 相似文献
7.
Hans Hebert Peter L. Jørgensen Elisabeth Skriver Arvid B. Maunsbach 《生物化学与生物物理学报:生物膜》1982,689(3):571-574
Extensive formation of two-dimensional crystals of the proteins of the pure membrane-bound is induced during prolonged incubation with vanadate and magnesium. Some membrane crystals are formed in medium containing magnesium and phosphate. Computer-averaged images of the two-dimensional crystals show that the unit cell in vanadate-induced crystals contains a protomeric αβ-unit of the enzyme protein. In phosphate-induced crystals an occupies one unit cell suggesting that interactions between αβ-units can be of importance in the function of the Na+, K+ pump. 相似文献
8.
The number of K+ bound to the (Na+ + K+)-ATPase has been measured under equilibrium conditions by a differential-titration technique (Hastings, D.F. (1977) Anal. Biochem. 83, 416-432). 5.1 K+ were bound per 32P-labelling site. The K'D for K+ was dependent on the concentration of choline, which was included to give ionic strength. K'D was 59 +/- 2.5 microM with 97 mM choline, 26 +/-1.9 microM with 30 mM choline. The K+ : choline selectivity was 2564 : 1 and the calculated K'D for K+ with zero choline was 11 microM and for choline with zero K+ was 28 mM. 20 microM ATP in the presence of 97 mM choline incresed the K'D for potassium 3-fold to 177 +/- 14 microM. The K'D for K+ with 3 mM Na+ in the presence of 27 mM choline was 81 +/- 10 microM and with 30 mM Na+ without choline 700 +/- 250 microM. The calculated K'D for Na+ at zero K+ and zero choline was 0.6 +/- 0.2 mM. The K+ : Na+ selectivity was 54 : 1. 相似文献
9.
An analysis of biphasic time courses: the inactivation of (Na+ + K+)-ATPase and Ca2+-ATPase by ATP-analogs 总被引:1,自引:0,他引:1
The inactivation of (NA+ + K+)-ATPase and Ca2+-ATPase brought about by the substitution of ATP by covalently binding analogs is studied. Most of the analogs cause biphasic courses of inactivation. The families of time courses obtained for different concentrations of the analog exhibit a characteristic feature that is common to both ATPases. The times of transition from one branch to the other of the biphasic curves are practically independent of the concentration of the analog. An analysis of the eigenvalues from different reaction models shows that for these time evolutions the enzyme exists necessarily in two states, only one of which is active for the analog. As a preliminary attempt, the models have been fitted to the experimental data of three different sets of families of curves. It is demonstrated that a two-sites model of inactivation of (Na+ + K+)-ATPase postulated in the literature cannot be valid. 相似文献
10.
W. H. M. Peters A. G. H. Ederveen M. H. L. Salden J. J. H. H. M. de Pont S. L. Bonting 《Journal of bioenergetics and biomembranes》1984,16(3):223-232
Goat antisera against (Na+ + K+)-ATPase and its isolated subunits and against (K+ + H+)-ATPase have been prepared in order to test for immune cross-reactivity between the two enzymes, whose catalytic subunits show great chemical similarity. None of the (Na+ + K+)-ATPase antisera cross-reacted with (K+ + H+)-ATPase or inhibited its enzyme activity. The same was true for the (K+ + H+)-ATPase antiserum with regard to (Na+ + K+)-ATPase and its subunits and its enzyme activity. So not withstanding the chemical similarity of their subunits, there is no immunological cross-reactivity between these two plasma membrane ATPases.Number LIII in the series Studies on (Na+ + K+)-Activated ATPase. 相似文献
11.
Low-affinity Na+ sites on (Na+ +K+)-ATPase modulate inhibition of Na+-ATPase activity by vanadate 总被引:1,自引:0,他引:1
Na+-ATPase activity is extremely sensitive to inhibition by vanadate at low Na+ concentrations where Na+ occupies only high-affinity activation sites. Na+ occupies low-affinity activation sites to reverse inhibition of Na+-ATPase and (Na+, K+)-ATPase activities by vanadate. This effect of Na+ is competitive with respect to both vanadate and Mg2+. The apparent affinity of the enzyme for vanadate is markedly increased by K+. The principal effect of K+ may be to displace Na+ from the low-affinity sites at which it activates Na+-ATPase activity. 相似文献
12.
Showdomycin inhibited pig brain (Na+ + K+)-ATPase with pseudo first-order kinetics. The rate of inhibition by showdomycin was examined in the presence of 16 combinations of four ligands, i.e., Na+, K+, Mg2+ and ATP, and was found to depend on the ligands added. Combinations of ligands were divided into five groups in terms of the magnitude of the rate constant; in the order of decreasing rate constants these were: (1) Na+ + Mg2+ + ATP, (2) Mg2+, Mg2+ + K+, K+ and none, (3) Na+ + Mg2+, Na+, K+ + Na+ and Na+ + K+ + Mg2+, (4) Mg2+ + K+ + ATP, K+ + ATP and Mg2+ + ATP, (5) K+ + Na + + ATP, Na+ + ATP, Na+ + K+ + Mg2+ + ATP and ATP. The highest rate was obtained in the presence of Na+, Mg2+ and ATP. The apparent concentrations of Na+, Mg2+ and ATP for half-maximum stimulation of inhibition (KS0.5) were 3 mM, 0.13 mM and 4 MicroM, respectively. The rate was unchanged upon further increase in Na+ concentration from 140 to 1000 mM. The rates of inhibition could be explained on the basis of the enzyme forms present, including E1, E2, ES, E1-P and E2-P, i. e., E2 has higher reactivity with showdomycin than E1, while E2-P has almost the same reactivity as E1-P. We conclude that the reaction of (Na+ + K+)- ATPase proceeds via at least four kinds of enzyme form (E1, E2, E1 . nucleotide and EP), which all have different conformations. 相似文献
13.
Incorporation of Na+ - Ca2+ antiporter and of (Na+ + K+)-ATPase into liposomes and demonstration of their non-identity 总被引:1,自引:0,他引:1
(Na+ + K+)-ATPase was isolated from the grey matter of brain and incorporated into liposomes. Most of the reconstituted enzyme was oriented 'inside-out' with respect to its in vivo orientation and externally added ATP promoted Na+ uptake that was inhibitable by internally trapped ouabain. Using the same proteoliposomes, an Na+ - Ca2+ exchange system was observed as indicated by the following pieces of evidence. (1) The Na+ gradient provided the only readily apparent driving force for acceleration of Ca2+ accumulation into proteoliposomes. (2) The antiporter was specific for Ca2+, high Mg2+ excess did not inhibit Ca2+ antiport. (3) The Na+ efflux was dependent on the extravesicular Ca2+ concentration. (4) The Na+ efflux was not inhibited by tetrodotoxin. The demonstrated Na+ - Ca2+ exchange could not be related to (Na+ + K+)-ATPase protein, since it was not purified with (Na+ + K+)-ATPase, as followed from transport studies with liposomes containing (Na+ + K+)-ATPase of different specific activity. The results strongly indicate that plasma membranes isolated from the grey matter of brain contain an Na+ - Ca2+ exchange system and that the proteoliposomes are suitable for further purification of the carrier molecule. 相似文献
14.
15.
The temperature dependence of (Na+ + K+)-ATPase was measured, utilizing preparations of enzyme from heat and kidney of rats, hamsters, guinea pigs, ground squirrels, turtles, chickens, and ducks. The two hibernating species, hamsters and ground squirrels, were studied awake at normothermia and hibernating at 4 degrees C. The results for every species except the turtles showed the same temperature dependence established for (Na++K+)-ATPase from rabbit kidney with a quasi-linear dependence above 15 degrees C and little or no activity below 15 degrees C. Turtle enzymes showed a broad activity versus temperature curve with a fall-off at high and low temperatures. The data in all cases, including the turtle data, may be fitted by a previously described thermodynamic kinetic model. Further, the model will fith the turnover or decrease in enzyme activity at higher temperatures observed in a number of cases. These results do not support the widely imputed ion pumping role for (Na++K+)-ATPase. 相似文献
16.
H G Swarts H A Zwartjes F M Schuurmans Stekhoven J J de Pont 《Biochimica et biophysica acta》1987,903(3):525-532
In order to study whether Pb2+ and imidazole increase the ATP phosphorylation level of (Na+ + K+)-ATPase by the same mechanism, the effects of both compounds on phosphorylation and dephosphorylation reactions of the enzyme have been studied. Imidazole in the presence of Mg2+ increases steady-state phosphorylation of (Na+ + K+)-ATPase by decreasing, in a competitive way, the K+-sensitivity of the formed phospho-enzyme (E-P . Mg). If Pb2+ is present during phosphorylation, the rate of phosphorylation increases and a K+- and ADP-insensitive phosphointermediate (E-P . Pb) is formed. Pb2+ has no effect on the K+-sensitivity of E-P . Mg and EDTA is unable to affect the K+-insensitivity of E-P . Pb. These effects indicate that Pb2+ acts before or during phosphorylation with the enzyme. Binding of Na+ to E-P . Pb does not restore K+-sensitivity either. However, increasing Na+ during phosphorylation in the presence of Pb2+ leads to formation of the K+-sensitive intermediate (E-P . Mg), indicating that E-P . Pb is formed via a side path of the Albers-Post scheme. ATP and ADP decrease the dephosphorylation rate of both E-P . Mg and E-P . Pb. Above optimal concentration, Pb2+ also decreases the steady-state phosphorylation level both in the absence and in the presence of Na+. This inhibitory effect of Pb2+ is antagonized by Mg2+. 相似文献
17.
Kaplia AA Khizhniak SV Kudriavtseva AG Papageorgakopulu N Osinskiĭ DS 《Ukrainski? biokhimicheski? zhurnal》2006,78(1):29-42
A current state of researches on mechanisms of ion homeostasis regulation in the specific conditions of the uncontrolled malignant tumor growth (mainly in carcinomas) concerning the contribution of Na+,K+-ATPase, plasma membrane and sarco(endo)plasmic reticulum Ca2+-ATPases has been reviewed. Particular attention has been focused on the molecular and biochemical links providing the redistribution of the transporting ATPases isozyme pattern for the regulatory requirements of the cell signaling pathways at stable proliferation and viability in malignancy. 相似文献
18.
19.
In previous studies we had demonstrated that in the presence of 0.25 mM Cu2+ and 1.25 mM o-phenanthroline, cross-linking of the alpha-subunits of Na+ + K+)-dependent adenosine triphosphatase was induced by the addition of Na+ + ATP, and that the formation of the alpha,alpha-dimer was preceded by that of phosphoenzyme. The purpose of the present studies was the further evaluation of the role of phosphoenzyme in the process of cross-linking. Na+ + UTP did not induce cross-linking unless Mg2+ was also added. In contrast, Na+ + ATP-induced cross-linking did not require the addition of Mg2+. The different effects of ATP and UTP in the absence of added Mg2+ could be accounted for by the presence in the enzyme preparation of bound Mg2+ which supported enzyme phosphorylation by ATP but not by UTP. When the enzyme was phosphorylated by Pi, in the presence of Mg2 and ouabain, and the exposed to Cu2+ and o-phenanthroline, the alpha,alpha-dimer was obtained. Under these conditions, Na+ blocked both phosphorylation and cross-linking. These results indicate that it is the formation of phosphoenzyme per se that leads to conformational transitions favorable to cross-linking. They also suggest that Cu2+ and o-phenanthroline participate in the cross-linking reaction, but not in the phosphorylation reactions. In the digitonin-treated enzyme, Na+ and ATP induced the formation of phosphoenzyme, but not that of alpha,alpha-dimer. These findings indicate that in addition to phosphorylation, a proper orientation o alpha-subunits in an oligomer is also necessary for cross-linking. 相似文献
20.
Expression of functional (Na+ + K+)-ATPase from cloned cDNAs 总被引:13,自引:0,他引:13
Functional (Na+ + K+)-ATPase is formed in Xenopus oocytes injected with alpha- and beta-subunit-specific mRNAs derived from cloned Torpedo californica cDNAs. Both the mRNAs are required for the expression of functional (Na+ + K+)-ATPase. 相似文献