首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Suppressor tRNAs are useful tools for determining identity elements which define recognition of tRNAs in vivo by their cognate aminoacyl-tRNA synthetases. This study was aimed at the isolation of active amber tRNA(Asn). Nineteen mutated tRNA(Asn)CUA having amber suppressor activity were selected by an in vivo genetic screen, and all exclusively inserted glutamine. From analysis of the different mutations it is concluded that glutamine accepting activity was obtained upon reducing the interaction strength between the first base pair of the tRNA(Asn)CUA by direct or indirect effects. Failure to isolate tRNA(Asn)CUA suppressors charged with asparagine as well as other evolutionary related amino acids is discussed.  相似文献   

2.
The U8:A14 tertiary base pair of transfer RNAs (tRNAs) stabilizes the sharp turn from the acceptor stem to the dihydrouridine stem. This tertiary base pair is important for the overall L-shaped tRNA structure. Inspection of tRNA sequences shows that U8:A14 is highly conserved. However, variations of U8:A14 are found in natural sequences. This raises the question of whether all 16 permutations of U8:A14 can be accommodated by a single tRNA sequence framework and by the bacterial translational apparatus. Here we expressed the wild type and 15 variants of U8:A14 of an alanine tRNA amber suppressor in Escherichia coli and tested the ability of each to suppress an amber mutation. We showed that 12 of the 15 variants are functional suppressors (sup+) and 3 are nonfunctional (sup-). Of the 12 functional suppressors, the G8:G14 variant is the most efficient suppressor, whose suppression efficiency is indistinguishable from that of the wild type. Analysis of tRNA structure with chemical probes and the lead-cleavage reaction, however, showed a distinct difference between the G8:G14 variant and the wild type. Thus, two different structures of E. coli tRNAAla/CUA share an identical functional phenotype in protein synthesis. The remaining 11 sup+ variants with reduced suppression efficiencies are likely to have other structural variations. We suggest that the variations of these sup+ mutants are structurally and functionally accommodated by the bacterial translational apparatus. In contrast, the three sup- mutants harbor variations that alter the backbone structure in the corner of the L. These variations are likely to reduce the stability of the tRNA inside the cell or, among others, to interfere with the ability of the tRNA to functionally interact with elongation factor Tu and with the ribosome.  相似文献   

3.
An Arabidopsis thaliana L. DNA containing the tRNA(TrpUGG) gene was isolated and altered to encode the amber suppressor tRNA(TrpUAG) or the ochre suppressor tRNA(TrpUAA). These DNAs were electroporated into carrot protoplasts and tRNA expression was demonstrated by the translational suppression of amber and ochre nonsense mutations in the chloramphenicol acetyltransferase (CAT) reporter gene. DNAs encoding tRNA(TrpUAG) and tRNA(TrpUAA) nonsense suppressor tRNAs caused suppression of their cognate nonsense codons in CAT mRNAs, with the tRNA(TrpUAG) gene exhibiting the greater suppression under optimal conditions for expression of CAT. The development of these translational suppressors which function in plant cells facilitates the study of plant tRNA gene expression and will make possible the manipulation of plant protein structure and function.  相似文献   

4.
5.
B Ulmasov  A Topin  Z Chen  S H He    W R Folk 《Nucleic acids research》1998,26(22):5139-5141
Mutation of the Arabidopsis thaliana tRNA (Trp)(CCA) anticodon or of the A73 discriminator base greatly diminishes in vitro aminoacylation with tryptophan, indicating the importance of these nucleotides for recognition by the plant tryptophanyl-tRNA synthetase. Mutation of the tRNA (Trp)(CCA) anticodon to CUA so as to translate amber nonsense codons permits tRNA (Trp)(CCA) to be aminoacylated by A.thaliana lysyl-tRNA synthetase. Thus, translational suppression by tRNA (TRP)(CCA) observed in plant cells includes significant incorporation of lysine into protein.  相似文献   

6.
Over 100 revertants of five different amber mutants were analyzed by Southern blot hybridization using synthetic oligomers as probes to detect a single base change at the anticodon, CCA to CTA (amber), of tRNA(Trp) genes of Caenohrabditis elegans. Of the 12 members of the tRNA(Trp) gene family, a total of eight were converted to amber suppressor alleles. All eight encode identical tRNAs; three of these are new tRNA(Trp) suppressors, sup-21, sup-33 and sup-34. Previous results had suggested that individual suppressor tRNA genes were expressed differentially in a cell-type- or developmental stage-specific manner. To extend these observations to the new genes and to test the specificity of expression against additional genes, cross suppression tests of these eight amber suppressors were carried out against amber mutations in several different genes including genes likely to be expressed in the same cell-type: three nervous system-affecting genes, two muscle structure-affecting genes and two genes presumed to be expressed in hypodermis. Seven out of eight suppressors could be distinguished one from another by the spectrum of their suppression efficiencies. These results also provide further evidence of cell-type-specific patterns of expression in the nervous system, muscle and hypodermis. The suppression pattern of the suppressor against the two muscle-affecting genes, unc-15 and unc-52, suggested that either the suppressors are expressed in a developmental stage-specific manner or that the unc-52 products are expressed in cell-types other than muscle, possibly hypodermis.  相似文献   

7.
The discriminator nucleotide (position 73) in tRNA has long been thought to play a role in tRNA identity as it is the only variable single-stranded nucleotide that is found near the site of aminoacylation. For this reason, a complete mutagenic analysis of the discriminator in three Escherichia coli amber suppressor tRNA backgrounds was undertaken; supE and supE-G1C72 glutamine tRNAs, gluA glutamate tRNA and supF tyrosine tRNA. The effect of mutation of the discriminator base on the identity of these tRNAs in vivo was assayed by N-terminal protein sequencing of E. coli dihydrofolate reductase, which is the product of suppression by the mutated amber suppressors, and confirmed by amino acid specific suppression experiments. In addition, suppressor efficiency assays were used to estimate the efficiency of aminoacylation in vivo. Our results indicate that the supE glutamine tRNA context can tolerate multiple mutations (including mutation of the discriminator and first base-pair) and still remain predominantly glutamine-accepting. Discriminator mutants of gluA glutamate tRNA exhibit increased and altered specificity probably due to the reduced ability of other synthetases to compete with glutamyl-tRNA synthetase. In the course of these experiments, a glutamate-specific mutant amber suppressor, gluA-A73, was created. Finally, in the case of supF tyrosine tRNA, the discriminator is an important identity element with partial to complete loss of tyrosine specificity resulting from mutation at this position. It is clear from these experiments that it may not be possible to assign a specific role in tRNA identity to the discriminator. The identity of a tRNA in vivo is determined by competition among aminoacyl-tRNA synthetases, which is in turn modulated by the nucleotide substitution as well as the tRNA context.  相似文献   

8.
Among the mischarging mutants isolated from strains with Su+2 glutamine tRNA, two double-mutants, A37A29 and A37C38, have been suggested to insert tryptophan at the UAG amber mutation site as determined by the suppression patterns of a set of tester mutants of bacteria and phages (Yamao et al., 1988). In this paper, we screened temperature sensitive mutants of E. coli in which the mischarging suppression was abolished even at the permissive temperature. Four such mutants were obtained and they were identified as the mutants of a structural gene for tryptophanyl-tRNA synthetase (trpS). Authentic trpS mutations, such as trpS5 or trpS18, also restricted the mischarging suppression. These results strongly support the previous prediction that the mutant tRNAs of Su+2, A37A29 and A37C38, are capable of interacting with tryptophanyl-tRNA synthetase and being misaminoacylated with tryptophan in vivo. However, in an assay to determine the specificity of the mutant glutamin tRNAs, we detected predominantly glutamine, but not any other amino acid, being inserted at an amber codon in vivo to any significant degree. We conclude that the mutant tRNAs still accept mostly glutamine, but can accept tryptophan in an extent for mischarging suppression. Since the amber suppressors of Su+7 tryptophan tRNA and the mischarging mutants of Su+3 tyrosine tRNA are charged with glutamine, structural similarity among the tRNAs for glutamine, tryptophan and tyrosine is discussed.  相似文献   

9.
Previously, arginine revertants of Escherichia coli WWU, a derivative of E. coli 15T(-), have been subdivided by two independent methods: (i) the streak morphology on nutrient agar, and (ii) the pattern of phage growth using amber and ochre mutants of bacteriophage T4. In the first assay, revertants were subdivided into two classes according to the appearance of streaks after incubation on nutrient agar, a thick, even line of growth defining normal revertants and a thin, irregular line defining aberrant revertants. In the second assay, revertants were classified by the suppressors they contained. The present work demonstrates that revertants containing an amber suppressor show the aberrant morphology and are also able to catabolize thymidine for energy and carbon. This is in contrast to the parent WWU containing no suppressor, which shows a normal morphology and cannot utilize thymidine as an energy source. Revertants containing no suppressor, isolated specifically for their ability to catabolize thymidine, show an aberrant morphology. Together, these results indicate that the aberrant morphology results from suppression of an amber triplet in a gene of the thymidine catabolic pathway. Enzyme assays show the amber triplet to be in the gene specifying deoxyribomutase. It is suggested that the aberrant arginine revertants are analogous to high thymine-requiring mutants and that, in general, high and low thymine-requiring mutants differ from one another in their ability to catabolize deoxyribose-1-phosphate.  相似文献   

10.
Using synthetic oligonucleotides, we have constructed a collection of Escherichia coli amber suppressor tRNA genes. In order to determine their specificities, these tRNAs were each used to suppress an amber (UAG) nonsense mutation in the E. coli dihydrofolate reductase gene fol. The mutant proteins were purified and subjected to N-terminal sequence analysis to determine which amino acid had been inserted by the suppressor tRNAs at the position of the amber codon. The suppressors can be classified into three groups on the basis of the protein sequence information. Class I suppressors, tRNA(CUAAla2), tRNA(CUAGly1), tRNA(CUAHisA), tRNA(CUALys) and tRNA(CUAProH), inserted the predicted amino acid. The class II suppressors, tRNA(CUAGluA), tRNA(CUAGly2) and tRNA(CUAIle1) were either partially or predominantly mischarged by the glutamine aminoacyl tRNA synthetase. The class III suppressors, tRNA(CUAArg), tRNA(CUAAspM), tRNA(CUAIle2), tRNA(CUAThr2), tRNA(CUAMet(m)) and tRNA(CUAVal) inserted predominantly lysine.  相似文献   

11.
Suppressors of lysine codons may be misacylated lysine tRNAs   总被引:4,自引:2,他引:2  
We describe a novel class of missense suppressors that read the codons for lysine at two positions (211 and 234) in the trpA polypeptide of Escherichia coli. The suppressor mutations are highly linked to lysT, a gene for lysine tRNA. The results suggest that the suppressors are misacylated lysine tRNAs that carry glycine or alanine. The mutant codons are apparently suppressed better at position 211 than at position 234, indicating the existence of codon context effects in missense suppression.  相似文献   

12.
The gene encoding the enzyme tyrosyl tRNA synthetase from Bacillus stearothermophilus has been systematically altered using synthetic oligonucleotides as mutagens. The construction of mutations has been facilitated by using strains of bacteria defective in mismatch repair and also by utilising a genetic marker in the M13 strain (such as an amber mutation, or an EcoK or EcoB site) which allows selection for the progeny of M13 replication derived from the minus (mutagenized) strand. Several mutations have been constructed in the ATP binding site to elucidate the roles of individual residues in catalysis and substrate binding and it has even been possible to construct mutants which have improved affinity for ATP. Mutations in various surface lysine and arginine residues have allowed us to identify potential contacts with the tRNA, and indicate that a cluster of basic residues close to the C-terminus of the enzyme probably makes important interactions with the tRNA.  相似文献   

13.
We present a novel missense suppression system for the selection of tRNA(2GIn) mutants that can efficiently translate the CGA (arginine) codon as glutamine. tRNA(2Gln) mutants were cloned from a partially randomized synthetic gene pool using a plasmid vector that simultaneously expresses the tRNA gene and, to ensure efficient aminoacylation, the glutamine aminoacyl-tRNA synthetase gene (glnS). tRNA mutants that insert glutamine at CGA were selected as missense suppressors of a lacZ mutant (lacZ625(CGA)) that contains CGA substituted for an essential glutamine codon. Preliminary characterizations of four suppressors is presented. All of them contain two anticodon mutations: C-->U at position 34 and U-->C at position 35, which allow for cognate translation of CGA. U35 was previously shown to be an important determinant for glutaminylation of tRNA(2Gln) in vitro; suppression in vivo requires overexpression of the glutaminyl-tRNA synthetase gene (glnS). One tRNA variant contains no further mutations and has the highest missense suppression activity (8%). Three other isolates each contain an additional point mutation that alters suppression efficiency. This system will be useful for further studies of tRNA structure and function. In addition, because relatively efficient translation of the rare CGA codon as glutamine is not toxic for Escherichia coli, it may be possible to translate this sense codon with other alternate meanings, a property which could greatly facilitate protein engineering.  相似文献   

14.
以超阻遏突变体3—18为出发株,采用以乳糖为唯一碳源的NCE平板的方法分离到439 株调节突变体。通过转导引入tRNA抑制基因从中检测到 11株 purR(am)候选株。共转导分 析证明,这些突变株的琥珀浪突变均发生在purR上。用 supD. supE和 supF分别对上述各amber 突变体作了氨基酸取代实验,初步结果表明:同一氨基酸对purR不同位点(am)的氨基酸取 代,对PurR调节功能有不同程度的影响。不同氨基酸(3种)对purR同一位点(am)的氨基酸取 代,对其调节功能的影响也存在差异。  相似文献   

15.
Aminoacyl-tRNA synthetases (aaRSs) are enzymes that are highly specific for their tRNA substrates. Here, we describe the expansion of a class IIb aaRS-tRNA specificity by a genetic selection that involves the use of a modified tRNA displaying an amber anticodon and the argE(amber) and lacZ(amber) reporters. The study was performed on Escherichia coli aspartyl-tRNA synthetase (AspRS) and amber tRNA(Asp). Nine AspRS mutants able to charge the amber tRNA(Asp) and to suppress the reporter genes were selected from a randomly mutated library. All the mutants exhibited a new amber tRNA(Asp) specificity in addition to the initial native tRNA(Asp). Six mutations were found in the anticodon-binding site located in the N-terminal OB-fold. The strongest suppressor was a mutation of residue Glu-93 that contacts specifically the anticodon nucleotide 34 in the crystal structure. The other mutations in the OB-fold were found at close distance from the anticodon in the so-called loop L45 and strand S1. They concern residues that do not contact tRNA(Asp) in the native complex. In addition, this study shows that suppressors can carry mutations located far from the anticodon-binding site. One such mutation was found in the synthetase hinge-module where it increases the tRNA(Asp)-charging rate, and two other mutations were found in the prokaryotic-specific insertion domain and the catalytic core. These mutants seem to act by indirect effects on the tRNA acceptor stem binding and on the conformation of the active site of the enzyme. Altogether, these data suggest the existence of various ways for modifying the mechanism of tRNA discrimination.  相似文献   

16.
Mischarging mutants of Escherichia coli sup3 tyrosine transfer RNA have been isolated by selecting for suppression of bacterial amber mutations not suppressed by sup3. Five of the mutants have single base changes in the amino acid acceptor stem (A1, A2, U80, U81 and G82). Mutants A1 and A2 are weak thermosensitive suppressors from which thermostable derivatives have been isolated. Some of these derivatives affect the amount of tRNA synthesized but not the sequence (precursor or promoter mutations), and others are double mutants A1U81 and A2U80. The latter mutant does not mischarge. The efficiency of suppression of A1 and A2 can also be increased by recombination events that lead to duplication and triplication of the suppressor gene.The amino acid inserted by some of these mutants at the amber site has been determined. Mutant A1 inserts glutamine, while U81 and A1U81 insert both glutamine and tyrosine.Taken together the results show that the terminal part of the amino acid acceptor stem has an important role in the specificity of aminoacylation by the glutamine and tyrosine synthetase.  相似文献   

17.
Y M Hou  P Schimmel 《Biochemistry》1992,31(42):10310-10314
A single G3:U70 base pair in the acceptor helix is the major determinant of alanine acceptance in alanine transfer RNAs. Transfer of this base pair into other transfer RNAs confers alanine acceptance. A G3:C70 substitution eliminates alanine acceptance in vivo and in vitro. In this work, a population of mutagenized G3:C70 alanine tRNA amber suppressors was subjected to a selection for mutations that compensate for the inactivating G3:C70 substitution. No compensatory mutations located in the acceptor helix were obtained. Instead, a U27:U43 substitution that replaced the wild-type C27:G43 in the anticodon stem created a U27:U43/G3:C70 mutant alanine tRNA that inserts alanine at amber codons in vivo. The U27:U43 substitution is at a location where previous footprinting work established an RNA-protein contact. Thus, this mutation may act by functionally coupling a distal part of the tRNA structure to the active site.  相似文献   

18.
The transient expression of three novel plant amber suppressors derived from a cloned Nicotiana tRNASer(CGA), an Arabidopsis intron-containing tRNATyr(GTA) and an Arabidopsis intron-containing tRNAMet(CAT) gene, respectively, was studied in a homologous plant system that utilized the Agro bacterium-mediated gene transfer to Arabidopsis hypocotyl explants. This versatile system allows the detection of β-glucuronidase (GUS) activity by histochemical and enzymatic analyses. The activity of the suppressors was demonstrated by the ability to suppress a premature amber codon in a modified GUS gene. Co-transformation of Arabidopsis hypocotyls with the amber suppressor tRNASer gene and the GUS reporter gene resulted in ~10% of the GUS activity found in the same tissue transformed solely with the functional control GUS gene. Amber suppressor tRNAs derived from intron-containing tRNATyr or tRNAMet genes were functional in vivo only after some additional gene manipulations. The G3:C70 base pair in the acceptor stem of tRNAMet(CUA) had to be converted to a G3:U70 base pair, which is the major determinant for alanine tRNA identity. The inability of amber suppressor tRNATyr to show any activity in vivo predominantly results from a distorted intron secondary structure of the corresponding pre-tRNA that could be cured by a single nucleotide exchange in the intervening sequence. The improved amber suppressors tRNATyr and tRNAMet were subsequently employed for studying various aspects of the plant-specific mechanism of pre-tRNA splicing as well as for demonstrating the influence of intron-dependent base modifications on suppressor activity.  相似文献   

19.
A pool of 84-nt RNAs containing a randomized sequence of 50 nt was selected against gel-immobilized Escherichia coli release factor 1 (RF-1) responsible for translation termination at amber (UAG) stop codon. The strongest aptamer (class II-1) obtained from 43 clones bound to RF-1, but not to UAA/UGA-targeting RF-2, with Kd = 30+/-6 nM (SPR). A couple of unpaired hairpin domains in the aptamer were suggested as the sites of attachment of RF-1. By binding to and hence inhibiting the action of RF-1 specifically or bio-orthogonally, aptamer class II-1 enhanced the amber suppression efficiency in the presence of an anticodon-adjusted (CUA) suppressor tRNA without practically damaging the protein translation machinery of the cell-free extract of E. coli, as confirmed by the translation of amber-mutated (gfp(amber141) or gfp(amber178)) and wild-type (gfp(wild)) genes of GFP.  相似文献   

20.
tRNA isodecoders share the same anticodon but have differences in their body sequence. An unexpected result from genome sequencing projects is the identification of a large number of tRNA isodecoder genes in mammalian genomes. In the reference human genome, more than 270 isodecoder genes are present among the approximately 450 tRNA genes distributed among 49 isoacceptor families. Whether sequence diversity among isodecoder tRNA genes reflects functional variability is an open question. To address this, we developed a method to quantify the efficiency of tRNA isodecoders in stop-codon suppression in human cell lines. First, a green fluorescent protein (GFP) gene that contains a single UAG stop codon at two distinct locations is introduced. GFP is only produced when a tRNA suppressor containing CUA anticodon is co-transfected with the GFP gene. The suppression efficiency is examined for 31 tRNA isodecoders (all contain CUA anticodon), 21 derived from four isoacceptor families of tRNASer genes, 7 from five families of tRNALeu genes, and 3 from three families of tRNAAla genes. We found that isodecoder tRNAs display a large difference in their suppression efficiency. Among those with above background suppression activity, differences of up to 20-fold were observed. We were able to tune tRNA suppression efficiency by subtly adjusting the tRNA sequence and inter-convert poor suppressors into potent ones. We also demonstrate that isodecoder tRNAs with varying suppression efficiencies have similar stability and exhibit similar levels of aminoacylation in vivo. Our results indicate that naturally occurring tRNA isodecoders can have large functional variations and suggest that some tRNA isodecoders may perform a function distinct from translation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号