首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The interactive relationship between Cu deficiency and depressed synthesis of certain neurotransmitters has been recognized. To investigate the effects of dietary Cu supplementation on the catecholamine levels in genetically obese mice, male obese (ob/ob) mice and their lean (+/?) counterparts were administered either a control diet (4.0 mg/kg) or a Cu-supplemented diet (50 mg/kg) for 4 wk. The ob/ob mice that were fed a control diet showed lower liver and higher plasma levels of Cu. Depressed levels of plasma and brain catecholamines were also found in ob/ob mice that were fed the control diet. The ob/ob mice that received a Cu-supplemented diet showed significant increases in the levels of catecholamine in the plasma and brain. This study showed that catecholamine levels in ob/ob mice can be increased by dietary Cu supplementation. However, the interaction between Cu and sympathetic nervous activity in obesity was not elucidated in this study.  相似文献   

2.
We have examined the protein content and gene expression of three superoxide dismutase (SOD) isoenzymes in eight tissues from obese ob/ob mice, particularly placing the focus on extracellular-SOD (EC-SOD) in the white adipose tissue (WAT). Obesity significantly increased EC-SOD level in liver, kidney, testis, gastrocnemius muscle, WAT, brown adipose tissue (BAT), and plasma, but significantly decreased the isoenzyme level in lung. Tumor necrosis factor-α and interleukin-1β contents in WAT were significantly higher in obese mice than in lean control mice. Immunohistochemically, both WAT and BAT from obese mice could be stained deeply with anti-mouse EC-SOD antibody compared with those from lean mice. Each primary culture per se almost time-dependently enhanced EC-SOD production, and overtly expressed its mRNA. The loss of heparin-binding affinity of EC-SOD type C with high affinity for heparin occurred in kidney of obese mice. These results suggest that the physiological importance of this SOD isoenzyme in WAT may be a compensatory adaptation to oxidative stress.  相似文献   

3.
A perturbation of zinc metabolism has been noted in numerous laboratory animals with diabetes and obesity. The effects of zinc supplementation on body fat deposition in two types of experimental obese mice: genetically obese (ob/ob) mice and high-fat diet-induced ICR obese (HF) mice were investigated in this study. Their lean controls were +/? mice, and ICR on basal diet, respectively. The mice in the zinc-supplemented groups were administered 200 mg/kg zinc in their diets for 6 wk. Both the ob/ob mice and the HF mice, that were fed a diet containing a marginal zinc dosage (4–6 mg/kg), had lower zinc levels in their serum and carcass, and higher body fat content than their respective lean controls (p<0.01). After zinc supplementation, ob/ob mice and the HF mice significnatly (p<0.05) increased their body fat by 49.4% and 18.9%, respectively. This study revealed that body fat deposition can be aggravated by zinc supplementation in both types of obese mice. Zinc may be associated with the energy homeostasis of obesity, via its interaction with dietary fat consumption.  相似文献   

4.
The supplemental effects of zinc on thyroid status in obese (ob/ob) mice were studied. Four-week-old obese mice and their lean controls were fed either a basal diet or a zinc-supplemented diet (200 mg/kg diet) for 8 wk. Following the 8-wk basal diet, obese mice had lower serum T4 values, as well as hepatic T4 and T3 values, than lean mice (p < 0.05). A significant decrease in hepatic 5′-deiodinase activity was also observed in obese mice. Dietary zinc supplementation significantly reduced serum T4 levels in both the obese and lean mice. However, the zinc-supplemented effects on diminishing hepatic T4 and T3 values, as well as on 5′-deiodinase activities, were found only in obese mice (p < 0.05). Furthermore, the 5′-deiodinase activities in hepatic microsomal pellets after incubation with various zinc concentrations (0.5, 1.0, and 2.5 mM) were also examined. The 5′-deiodinase activities, in hepatic samples from all mice, were significantly attenuated by zinc treatments. However, this effect was more predominant in obese mice following the addition of 0.5 mM zinc. This study suggests that a lower hepatic 5′-deiodinase activity, resulting from a higher zinc level, might be related to abnormal energy metabolism in theob/ob mice.  相似文献   

5.
The effects of zinc supplementation (20 mM ZnCl2 from the drinking water for eight weeks) on plasma glucose and insulin levels, as well as its in vitro effect on lipogenesis and lipolysis in adipocytes were studied in genetically obese (ob/ob) mice and their lean controls (+/?). Zinc supplementation reduced the fasting plasma glucose levels in both obese and lean mice by 21 and 25%, respectively (p < 0.05). Fasting plasma insulin levels were significantly decreased by 42% in obese mice after zinc treatment. In obese mice, zinc supplementation also attenuated the glycemic response by 34% after the glucose load. The insulin-like effect of zinc on lipogenesis in adipocytes was significantly increased by 80% in lean mice. However, the increment of 74% on lipogenesis in obese mice was observed only when the zinc plus insulin treatment was given. This study reveals that zinc supplementation alleviated the hyperglycemia of ob/ob mice, which may be related to its effect on the enhancement of insulin activity.  相似文献   

6.
Stromal vascular cells from epididymal fat pads of lean and obese mice were cultured in a medium (α-MEM) containing fetal bovine serum (FBS) and cell replication followed for 11 days. In both types of cells, confluence occurred at 4–5 days, after which virtual growth arrest occurred in lean-mouse cells while replication continued, albeit at a slower rate in obese-mouse cells. Little or no lipid accumulation or glycerol-3-phosphate dehydrogenase (GPDH) activity was observed under these conditions. When a differentiation mixture consisting of insulin, corticosterone and isobutylmethylxanthine was added to the serum-containing α-MEM, a proportion of the lean-mouse cells accumulated triglycerides and GPDH activity increased significantly, indicating differentiation. By contrast, little or no differentiation occurred in obese-mouse cells. When cells grown in serum-containing α-MEM were transferred to a serum-free defined medium at confluence, extensive differentiation and maturation occurred in lean-mouse cells but not in obese-mouse cells. Similar experiments were conducted in cells isolated from the retroperitoneal fat pad. Although the growth pattern was similar to that of epididymal preadipocytes, the retroperitoneal lean- and obese-mouse cells differentiated more readily than epididymal cells, as shown by the GPDH specific activity. These data suggest that cells from obese mice are resistant to differentiation under conditions that support extensive differentiation in lean-mouse cells.  相似文献   

7.
The specific binding capacity for purine nucleotides in brown-adipose-tissue mitochondria is thought to indicate the capacity of the proton-conductance pathway which leads to uncoupled respiration. This functional relationship was investigated in studies measuring initial Ca2+-uptake rates and membrane potential in the presence or absence of GDP in brown-adipose-tissue mitochondria with different GDP-binding capacities. The mitochondria from pre-obese and obese ob/ob mice were less able than those from lean control mice to dissipate membrane potential in the absence of GDP. Mitochondria from the obese animals also maintained a higher Ca2+-uptake rate without GDP in comparison with the rate found with mitochondria from the lean mice. The GDP-dependence of Ca2+ uptake was greater in brown-adipose-tissue mitochondria from cold-adapted animals than in those from animals kept at 22 degrees C or at thermoneutrality (33 degrees C). It is concluded that Ca2+-uptake rate and membrane-potential values are depressed in the absence of GDP and indicate indirectly the influence of purine nucleotides on maintaining the proton electrochemical gradient in brown-adipose-tissue mitochondria. It is also apparent that the lower GDP-binding capacity in mitochondria from ob/ob mice is related to a decreased ability to dissipate the proton electrochemical gradient.  相似文献   

8.
Objective: ob/ob mice have increased sensitivity to many of leptin's effects. The primary objective of this experiment was to determine whether ob/ob mice demonstrated increased sensitivity to leptin‐induced adipose tissue apoptosis. Research Methods and Procedures: Fifteen‐week‐old female ob/ob and Ob/? mice received 0 (saline), 2.5, or 10 μg/d leptin for 14 days through subcutaneous (sc) osmotic minipumps. Food intake (FI), body temperature, physical activity, and body weight were measured daily. Body composition and weights and adipose tissue apoptosis (percentage DNA fragmentation) of inguinal, parametrial, and retroperitoneal fat pads were determined at the end of the study. Results: FI decreases were more pronounced in ob/ob. Leptin (10 μg/d) decreased total FI 71% in ob/ob and 34% in Ob/? (p < 0.05). Body weight was decreased by both doses of leptin in ob/ob (p < 0.01) but was unchanged in Ob/?. Leptin increased body temperature in ob/ob but not in Ob/?. Physical activity was increased 400% by 10 μg/d leptin in ob/ob (p < 0.01) but decreased 13% in Ob/? (p < 0.01). Body fat content of ob/ob was reduced by both leptin doses, whereas only 10 μg/d leptin decreased body fat in Ob/?. Fat pad weights were decreased similarly by leptin in both genotypes. However, apoptosis was increased by leptin in all three fat pads in ob/ob, whereas Ob/? showed significant increases only in retroperitoneal. Discussion: ob/ob mice had greater overall sensitivity to leptin. Although ob/ob mice appeared to be more sensitive than Ob/? mice to leptin‐induced adipose tissue apoptosis, there were differences among adipose depots in responsiveness to leptin‐induced apoptosis.  相似文献   

9.
10.
A method for the preparation of isolated adipocytes from obese mice is described. Similar yields of adipocytes (50--60%), as judged by several criteria, are obtained from obese mice and lean controls. Few fat-globules and no free nuclei were observed in cell preparations, which are metabolically active, respond to hormonal control and appear to be representative of intact adipose tissue. Noradrenaline-stimulated lipolysis was inhibited by insulin, equally in adipocytes from lean and obese mice. Inhibition in obese cells required exogenous glucose, and the insulin dose--response curve was shifted to the right. Basal lipogenesis from glucose was higher in adipocytes from obese mice, and the stimulatory effect of insulin was greater in cells from obese mice compared with lean controls. A rightward shift in the insulin dose--response curve was again observed with cells from obese animals. This suggests that adipose tissue from obese mice is insulin-sensitive at the high blood insulin concentrations found in vivo. The resistance of obese mice to the hypoglycaemic effect of exogenous insulin and their impaired tolerance to glucose loading appear to be associated with an impaired insulin response by muscle rather than by adipose tissue.  相似文献   

11.
12.
[Purpose]Deleted in breast cancer 1 (DBC1) ablation causes obesity, and stearoyl-CoA desaturase 1 (SCD1) induces the biosynthesis of monounsaturated fatty acids. This study examined whether voluntary wheel running (VWR) alters SCD-1 and DBC1 protein levels in the liver of leptin-deficient ob/ob mice.[Methods]Twenty-five Ob/Ob mice were divided into two groups (ob/ob-Sed and ob/ob-Ex). The expression of DBC1 and SCD1 in the mouse liver was determined using western blotting.[Results]After 10 weeks, VWR significantly reduced body weight without affecting the fatty acid synthase and CD36 protein levels. The average daily running distance was 4.0±1.0 km/day. This improvement was associated with changes in the hepatic SCD1 and DBC1 levels. Hepatic SCD-1 protein levels increased significantly, and DBC1 protein levels decreased in ob/ob-Sed animals. On the other hand, VWR inhibited the obesity-induced increase in SCD1 expression and impaired the obesity-induced decrease in DBC1 expression in the liver of leptin-deficient ob/ob mice.[Conclusion]This is the first study showing that VWR has strong effects on hepatic SCD1 and DBC1 in ob/ob mice, and provides key insights into the effects of exercise on obesity.  相似文献   

13.
本实验室前期研究发现,2型糖尿病动物模型ob/ob小鼠血清中miR-122的含量较正常C57BL/6小鼠显著升高.本文进一步研究肝脏特异性miR-122及其靶蛋白AldoA(果糖1,6-二磷酸醛缩酶A)在ob/ob小鼠肝脏代谢中的作用.首先,经qRT-PCR技术检测发现ob/ob小鼠肝脏miR-122水平较C57BL/6小鼠显著下降,而Western blotting分析发现ob/ob小鼠肝脏其靶蛋白AldoA的表达水平显著上升.进一步以miR-122分子转染293T细胞后收集其分泌的微囊泡(microvesicles,MVs),经qRT-PCR检测确认后采用特异性荧光染料DiI-C18标记MVs,以不同剂量尾静脉注射BALB/c小鼠体内,不同时间点取肝组织做冰冻切片.在荧光显微镜下观察证实,包裹有miR-122的MVs通过循环系统进入肝脏,同时qRT-PCR定量分析发现肝组织中miR-122含量显著升高,而蛋白质印迹检测发现其靶蛋白AldoA在肝脏中表达显著下降.AldoA主要催化糖酵解途径中果糖1,6-二磷酸和磷酸二羟丙酮及甘油醛-3-磷酸之间的转变,miR-122靶向作用AldoA可能在2型糖尿病的发生发展中发挥重要作用.  相似文献   

14.
1. Fatty acid synthesis, measured in the perfused liver of genetically obese (ob/ob) mice with 3H2O or [14C]actate, did not show the inhibition by [8-arginine]vasopressin (antidiuretic hormone) that is observed in livers from normal mice. 2. Hepatic glycogen breakdown in obese mice was stimuulated by vasopressin, but not as extensively as in lean mice. 3. If obese mice received a restricted amount of food, then fatty acid synthesis still did not respond to vasopressin, but glycogen breakdown was fully stimulated. 4. Cholesterol synthesis was not inhibited by vasopressin in livers from obese mice. 5. Vasopressin inhibited fatty acid synthesis in intact lean mice, but not in obese animals. 6. These results suggest that genetic obesity could be due to an inborn error within the mechanisms (other than adenylate cyclase) which mediate responses to extracellular effectors.  相似文献   

15.
A quantitative method for circulating islet cell surface antibodies (ICSA), based on the binding of125I-protein A to insulin-producing RINm5F cells, was used to evaluate ICSA in plasma of 4- to 40-week-old Aston obese hyperglycaemic (ob/ob) mice and normal control (+/+) mice. RINm5F cells bound 2502±l196 c.p.m.125I-protein A per l05 cells (mean±S.D.,n=54) after incubation with +/+ plasma. ICSA positive plasma (defined as125I-protein A binding, mean±2 S.D. of +/+ plasma) was detected in 3 out of 54+/+ mice and 3 out of 54 ob/ob mice. ICSA were not observed in ob/ob mice before the onset of diabetes (7 weeks of age), but were detected at 9, 20 and 40 weeks. At 20 weeks125I-protein A binding produced by ob/ob plasma was 35% greater than +/+ plasma (P<0.05). The low occurrence of ICSA in ob/ob mice (6%) suggests that factors other than ICSA are responsible for B-cell dysfunction and eventual islet degeneration observed in Aston ob/ob mice.  相似文献   

16.
Measurements were made of cytochrome c oxidase activity and the GDP-binding capacity of mitochondria in brown adipose tissue of genetically obese mice and wild-type siblings, to estimate the thermogenic capacity of the tissue. The binding capacity was decreased in ad libitum fed obese animals compared with wild-type animals. Limited feeding of obese animals to restrict their body weight caused a large increase in the binding capacity of the tissue, which was greater than that in wild-type animals fed either ad limitum or on a limited diet. The decreased binding capacity of brown adipose tissue mitochondria in obese mice appears to be a consequence of ad libitum feeding and therefore not a cause of the obesity. Limit feeding of obese animals also corrected their characteristic hypothermia at low ambient temperature. The large increase in the thermogenic capacity of brown adipose tissue in obese animals, induced by limited feeding, may account for the vital improvement of their thermoregulation. However, close similarities were found between obesity hypothermia and hypothermia induced in wild-type animals by restraint. It is suggested that changes in posture caused by obesity, resulting in increased loss of body heat, may be important in the development of obesity hypothermia. Obese animals fed less than wild-type grained more weight than wild-type animals, indicating that the high thermogenic capacity of their brown adipose tissue did not function to regulate their calorie intake.  相似文献   

17.
The activation of brown adipose tissue adenylate cyclase by catecholamines was studied in genetically obese (ob/ob) and lean mice. In obese mice, the maximum activation of the enzyme by several beta-adrenergic agonists was only two-thirds that in lean mice and, as an activator, noradrenaline was only one-eighth as potent. The adenylate cyclase was also less responsive to guanine nucleotides. In these respects, the defect in catecholamine-stimulated adenylate cyclase was similar in both white and brown adipose tissue of the obese mouse. The enzyme in brown adipose tissue differed from that in white adipose tissue in its sensitivity to other beta-adrenergic agonists and in its requirement for Mg2+. It is suggested that this abnormal catecholamine-activated adenylate cyclase in brown adipose tissue may be relate to the thermoregulatory defect of the obese mouse and hence may contribute to the obesity syndrome.  相似文献   

18.
1. Plasma glucose and insulin responses to bombesin were examined in 12-15-week-old 12 hr fasted lean and genetically obese hyperglycaemic (ob/ob) mice. 2. Bombesin (1 mg/kg ip) produced a prompt but transient increase of plasma insulin in lean mice (maximum increase of 50% at 5 min), and a more slowly generated but protracted insulin response in ob/ob mice (maximum increase of 80% at 30 min). Plasma glucose concentrations of both groups of mice were increased by bombesin (maximum increases of 40 and 48% respectively in lean and ob/ob mice at 15 min). 3. When administered with glucose (2 g/kg ip), bombesin (1 mg/kg ip) rapidly increased insulin concentrations of lean and ob/ob mice (maximum increases of 39 and 63% respectively at 5 min). Bombesin did not significantly alter the rise of plasma glucose after exogenous glucose administration to these mice. 4. The results indicate that bombesin exerts an insulin-releasing effect in lean and ob/ob mice. The greater insulin-releasing effect in ob/ob mice renders bombesin a possible component of the overactive entero-insular axis in the ob/ob mutant, especially if it acts within the islets as a neurotransmitter or paracrine agent.  相似文献   

19.
The hyperphagia and rapid body weight gain normally observed in young obese (ob/ob) mice were abolished by removal of their adrenal glands, whereas food intake and weight gain of lean mice were not significantly affected by adrenalectomy. Adrenalectomy lowered body energy density (kcal/g carcass) in obese mice more than could be attributed to reduced food intake per se, suggesting that their energy expenditure was also increased. In control obese mice, low stimulation of brown adipose tissue by the sympathetic nervous system, as indicated by the low fractional rates of norepinephrine (NE) turnover in their brown adipose tissue may have contributed to the reduced energy expenditure in these animals. Adrenalectomy increased the rates of NE turnover in brown adipose tissue of obese mice to rates nearly equal to those observed in lean mice without affecting NE turnover in this tissue of lean mice. Likewise, removal of the adrenals normalized the low rates of NE turnover in hearts of obese mice without affecting lean mice. Rates of NE turnover in two other organs, white adipose tissue and pancreas, of control and adrenalectomized obese mice were similar to rates observed in lean counterparts. The adrenal may thus contribute to both the hyperphagia and the low energy expenditure by brown adipose tissue that together cause gross obesity in ob/ob mice.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号