首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Sequential heterotrophic/autotrophic cultivation method was investigated for production of high concentration of Chlorella biomass with high cellular protein and chlorophyll contents. By using autotrophic growth medium, which contains glucose as organic carbon source, for heterotrophic culture, the protein and chlorophyll contents of the cells could be increased by simply illuminating the culture broth and aerating with CO2-enriched air at the end of the heterotrophic culture. A system was then constructed for continuous sequential heterotrophic/autotrophic production of algal biomass. The system was composed of the conventional mini-jar fermentor for the heterotrophic phase and a tubular photobioreactor for the autotrophic phase. The exhaust gas from the heterotrophic phase was used for aeration of the autotrophic phase in order to reduce the CO2 emission into the atmosphere. With this system, it was possible to produce high Chlorella biomass concentration (14 g L-1) containing 60.1% protein and 3.6% chlorophyll continuously for more than 640 h. During the steady state, about 27% of the CO2 produced in the heterotrophic phase was re-utilized in the autotrophic phase. When the tubular photobioreactor was replaced with a 3.5-L internally illuminated photobioreactor, the productivity increased from 2 g L-1 d-1 to 4 g L-1 d-1. However, the chlorophyll content of the cells was lower due to the lower light supply coefficient of the photobioreactor. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

2.
Effects of hydrodynamic stress, dissolved oxygen (DO) concentration and carbon sources on heterotrophic α-tocopherol production by Euglena gracilis were investigated. In a jar fermentor without baffle plates, increasing the agitation speed up to 500 rpm had no significant effect on cell growth and α-tocopherol production. However, in a jar fermentor equipped with baffle plates, both the cell growth and α-tocopherol production were highly suppressed at 500 rpm. At high hydrodynamic stress, the cells secreted nucleic acid-related substances to the culture broth and the shape of the cells shifted from elongated toward spherical. High DO concentration had adverse effects on both cell growth and α-tocopherol production, the optimum DO concentration being below 0.8 ppm. In comparison with glucose, the growth rate was lower but the α-tocopherol content of the cells was almost four times higher when ethanol was used as the organic carbon source. In a fed-batch culture with ethanol, a very high cell concentration of 39.5 g L-1 was obtained with α-tocopherol content of 1200 μg g-cell-1. This α-tocopherol content is very close to the values reported for photoautotrophic and photoheterotrophic cultures. A very high α-tocopherol productivity of 102 μg L-1 h-1 was obtained, indicating that heterotrophic cultivation of E. gracilis has a very high potential as a substitute for the current method of extraction from vegetable oils. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

3.
Chlorella is a promising alternative resource of lutein (xanthophyll) production as it can be cultivated heterotrophically in fermentors. In this paper, a kinetic model for lutein production by heterotrophic Chlorella pyrenoidosa was developed based on batch cultivations in 250-ml flasks and a 19-l fermentor. The model was validated by experimental data from two fed-batch cultivations performed in the same fermentor. The dynamic behavior of lutein production by C. pyrenoidosa with various concentrations of glucose and nitrogen was analyzed based on the kinetic model. Model-based analyses suggested that glucose concentrations between 5 and 24 g/l and nitrogen concentrations between 0.7 and 12 g/l during the cultivation were favorable for lutein production by heterotrophic C. pyrenoidosa. It also showed that fed-batch cultivations are more suitable for efficient production of lutein than batch ones. The results obtained in this study may contribute to commercial lutein production by heterotrophic Chlorella.  相似文献   

4.
Increasing sucrose from 20 to 50 g l−1 in Uncaria tomentosa cell suspension cultures enhanced ursolic acid and oleanolic acid production from 129 ± 61 to 553 ± 193 μg g−1 cell dry wt. The maximal concentration of both triterpenes (1680 ± 39 μg g−1 cell dry wt) was 8 days after elicitation by jasmonic acid, while yeast extract or citrus pectin treatments produced 1189 ± 20 or 1120 ± 26 μg g−1 cell dry wt, respectively. The ratio of ursolic acid:oleanolic acid was constant at 70:30.  相似文献   

5.
Atlantic sea scallops, Placopecten magellanicus, in most areas of the Bay of Fundy, New Brunswick, Canada, have year-round concentrations of paralytic shellfish posioning (PSP) toxins greater than the regulatory concentration of 80 μg STX eq. 100 g−1 wet weight. Scallops (mean shell height of 10.7 cm, age 3–5 years) were collected by SCUBA and individually tagged near Parker Island, Bay of Fundy. Half were hung 2 m below the low tide water level and the remainder were placed on the bottom (11 m depth at low tide) under the scallops held at 2 m. Scallop, water and sediment samples were collected monthly for determination of concentrations of PSP toxins and Alexandrium fundyense.In October, 1993, mean concentrations of PSP toxins in digestive gland, and mantle were 3205 and 1018 μg STX eq. 100 g−1 wet weight, respectively. Eight months later (June 1994), PSP concentrations in digestive glands from the surface and bottom had declined to 504 and 682 μg STX eq. 100 g−1 wet weight, respectively, whereas those in the mantle had declined to 802 and 681 μg STX eq. 100 g−1 wet weight. During July 1994, A. fundyense concentrations observed at Parker Island and offshore were 320 cells l−1 and 14,200 cells l−1, respectively. Subsequently, toxin concentrations in surface and bottom scallop digestive glands increased to 12,720 and 11,408 μg STX eq. 100 g−1 wet weight, whereas concentrations in mantles increased to 2126 and 1748 μg STX eq. 100 g−1 wet weight, respectively. Concentrations of PSP toxins in these tissues in October 1994 were similar to those measured in October 1993. Concentrations of PSP toxin were less than the regulatory concentration in the gonads and non-detectable in adductor muscles of all scallops sampled.There were no statistically significant differences in profiles for uptake and depuration of PSP toxins in scallops held at the surface compared to those from bottom, suggesting that A. fundyense cysts at the concentrations found in the sediment (45 cysts cm−3) did not contribute significantly to the year-round presence of PSP toxins within scallop tissues. The year-round occurrence of PSP toxin is probably due to accumulation during summer blooms followed by a very slow rate of depuration.  相似文献   

6.
The marine PrasinophyteTetraselmis may be cultured under both mixotrophic (photoheterotrophic) and heterotrophic conditions. The growth rate was slightly lower, and pigment levels and lipid composition were radically affected on heterotrophic culture in 1 L fermenters. Total chlorophyll levels of dark grown cultures were less than 1% of those observed in mixotrophically grown cells, the chlorophylla : b ratio also decreased as did the carotenoid content. In addition, the total amounts of lipids including polyunsaturated fatty-acids were also lower in heterotrophically cultured cells: 6.4 mg g–1 (dried alga) and 0.35 mg g–1 (dried alga); as compared to 37.1 mg g–1 (dried alga) and 18.5 mg g–1 (dried alga), for cells grown in the light. However, gross morphology and final yield (>16 g l–1) were relatively unaffected. The algae produced were spray-dried and tested for their suitability as an aquaculture feed.Address for correspondence  相似文献   

7.
Production of astaxanthin by sequential heterotrophic-photoautotrophiccultivation of a green alga, Haematococcus pluvialis was investigated.This involved cultivating the cells heterotrophically to high cellconcentration, followed by illumination of the culture for astaxanthinaccumulation. The optimum pH and temperature for heterotrophic biomassproduction were 8 and 25 °C, respectively. There was no significantdifference in the specific growth rate of the cells when acetateconcentration was varied between 10 mM and 30 mM. However, cellgrowth was inhibited at higher acetate concentrations. A pH stat methodwas then used for fed-batch heterotrophic culture, using acetate as theorganic carbon source. A cell concentration of 7 g L-1 wasobtained. Higher cell concentration could not be obtained because the cellschanged from vegetative to cyst forms during the heterotrophic cultivation.However, by using repeated fed-batch processes, the cells could bemaintained in the vegetative form, leading to more than two times increasein cell number output rate. When the vegetative cells were transferred tophotoautotrophic phase, there was a sharp decrease in the cell number andonly very few cells encysted and accumulated astaxanthin. On the otherhand, when the shift from heterotrophic to photoautotrophic condition wasdone when most of the cells had encysted, there was still a decrease in cellnumber but astaxanthin accumulation was very high. The astaxanthinconcentration (114 mg L-1) and productivity (4.4 mg L-1d-1) obtained by this sequential heterotrophic-photoautotrophiccultivation method are very high compared to the data in the literature.  相似文献   

8.
The batch fermentation of Rhodotorula acheniorum MC on a culture medium containing 5% sucrose, mineral salts and yeast extract at 26 °C for 96 h, with aeration at 0.75 v/v/m and agitation at 500 rev min −1 resulted in the synthesis of an exopolysaccharide (6.2 g l −1) which formed two fractions upon precipitation. The fractions were purified to a carbohydrate content of 98.2% for fraction I and 87.3% for fraction II. Mannose was the main monosaccharide component in a 92.8% concentration in fraction I and a 90.6% concentration in Fraction II. The exopolysaccharide was thus a mannan. The gel chromatograms confirmed the chemical composition of both fractions. The molecular weight of mannan I was 310 kD, whereas that of mannan II was 249 kD. The mannan I intrinsic viscosity [η]=6.23 dl g−1 was higher than that of mannan II [η]=2.73 dl g−1. The water-binding capacity of the mannan samples was established within the 1.2–3.5 g g−1 range. The multiplicative model [η]=387.22. Dr−0.1913. T−1.095. C1.814 describing the effect of the velocity gradient Dr, the exomannan concentration C and the temperature T on the dynamic viscosity values η of polymer solutions was obtained.  相似文献   

9.
The effect of elicitation with linoleic (C18:2) and α-linolenic (C18:3) fatty acids (LLA and α-LNA) was investigated in Panax ginseng C.A. Meyer adventitious roots cultured in 5 l balloon-type bioreactors. Fatty acids were added in culture medium at 0.0, 1.0, 2.5, 5.0, 10.0, and 20.0 μmol l−1 at day 40, at the end of exponential growth phase. Roots were harvested and assayed at day 47. Elicitation with both LLA and α-LNA enhanced accumulation of total polyphenolics and flavonoids in roots compared with control without elicitation. The highest accumulation of flavonoids was observed at 5.0 μmol l−1 for both elicitors. Total phenolics production reached its highest value of about 4.0 mg g−1 DW under the elicitation with 5.0 μmol l−1 LLA and 5.0–20.0 μmol l−1 α-LNA. Meanwhile, α-LNA was more effective than LLA for increasing biomass and ginsenoside production. The biomass of 11.1 g DW l−1 and maximal total ginsenoside content of 7.9 mg g−1 DW were achieved at 5 μmol l−1 α-linolenic acid. The essential polyunsaturated linoleic (C18:2) and α-linolenic (C18:3) fatty acids were accumulated in roots in response to elicitation while content of palmitic (C16:0) and oleic (C18:1) acids declined. The activities of SOD, G-POD and CAT were enhanced by two elicitors to similar extent while APX activity was preferably stimulated by α-LNA. Our results demonstrate that elicitation with α-linolenic acid stimulates production of biomass and secondary metabolites in bioreactor-cultured P. ginseng adventitious roots.  相似文献   

10.
Anabaena siamensis isolated from rice fields in Thailand is a fast growing cyanobacterium with a high nitrogen-fixing activity. Mutant strains resistant to the l-glutamate analogue, l-methionine sulfoximine (MSX) were isolated by ethyl methanesulfonate mutagenesis. A stable mutant named A. siamensis SS1, which released ammonium to the medium, was studied further. In batch cultures the rate of ammonium production peaked at the early log phase and gradually decreased until the 4th day of growth when the cultures reached a density of 90 μg chl ml−1. To obtain constant release of ammonium by SS1, continuous culture experiments were performed at a cell density of 5 μg chl ml−1 and the following results were obtained: (1) growth rate as the parent (μ:0·123 h−1) in the presence and absence of 500 μm MSX; (2) 48% GS transferase activity when compared with the parent; (3) ammonium excretion at a rate of 8 μmol (mg chl)−1 h−1 as measured up to 20 generations (120 h); (4) depressed nitrogenase activity; and (5) 30% higher nitrogenase activity than that of the parent. SS1 immobilized in alginate beads (5 μg chl ml−1) exhibited values of glutamine synthetase and nitrogenase activity similar to those of free cells. However, ammonium excretion at the rate of 11·61 μmol (mg chl)−1 h−1 was obtained only up to 20 h after loading in bioreactors, due to the fast growth of SS1 as also occurred in batch cultures.  相似文献   

11.
The phytoplankton communities and the production of cyanobacterial toxins were investigated in two alkaline Kenyan crater lakes, Lake Sonachi and Lake Simbi. Lake Sonachi was mainly dominated by the cyanobacterium Arthrospira fusiformis, Lake Simbi by A. fusiformis and Anabaenopsis abijatae. The phytoplankton biomasses measured were high, reaching up to 3159 mg l−1 in L. Sonachi and up to 348 mg l−1 in L. Simbi. Using HPLC techniques, one structural variant of the hepatotoxin microcystin (microcystin-RR) was found in L. Sonachi and four variants (microcystin-LR, -RR, -LA and -YR) were identified in L. Simbi. The neurotoxin anatoxin-a was found in both lakes. To our knowledge this is the first evidence of cyanobacterial toxins in L. Sonachi and L. Simbi. Total microcystin concentrations varied from 1.6 to 12.0 μg microcystin-LR equivalents g−1 DW in L. Sonachi and from 19.7 to 39.0 μg microcystin-LR equivalents g−1 DW in L. Simbi. Anatoxin-a concentrations ranged from 0.5 to 2.0 μg g−1 DW in L. Sonachi and from 0 to 1.4 μg g−1 DW in L. Simbi. In a monocyanobacterial strain of A. fusiformis, isolated from L. Sonachi, microcystin-YR and anatoxin-a were produced. The concentrations found were 2.2 μg microcystin g−1 DW and 0.3 μg anatoxin-a g−1 DW. This is the first study showing A. fusiformis as producer of microcystins and anatoxin-a. Since A. fusiformis occurs in mass developments in both lakes, a health risk for wildlife can be expected.  相似文献   

12.
A 30-l hollow fibre reactor with continuous fermentation for cell recycling of Escherichia coli AS 1.183 was used to remove the inhibitory effects on cell growth and extend the fast growth phase to increase the yield of polynucleotide phosphorylase (PNPase) in E. coli cells. When the dilution rate was 1.5 h−1, the cell concentration of E. coli reached 235 g/l (wet wt, 70% moisture content), with PNPase activity above 90 u/g (wet wt). With the dilution rate is 1.0 h−1, the fermentor volumetric productivity of PNPase in a hollow fiber reactor can reach 974 (u/h * l) compared to 20 (u/h * l) in a conventional batch culture.  相似文献   

13.
A strain of Nannochloropsis isolated originally from the East China Sea and obtained from Institute of Hydrobiology, Chinese Academy of Sciences was shown to utilize glucose or ethanol for mixotrophic and heterotrophic growth. The highest cell density, 550 mg L− 1 dry weight after culture for 8 days, was obtained during mixotrophic culture with 30 mM glucose. The organic carbon sources had no effect on the net photosynthetic rate, but enhanced the respiratory rate. The addition of an organic carbon source led to an increase in the cell lipid content and a decrease in their eicosapentaenoic acid (EPA) content. The EPA yield was 21.9 mg L− 1 using photoautotrophic culture, and 23.4 mg L− 1 and 23.0 mg L− 1, respectively, in mixotrophic cultivation with glucose or ethanol as the carbon source.  相似文献   

14.
Heterotrophic production of lutein by selected Chlorella strains   总被引:12,自引:0,他引:12  
Seven Chlorella strains representing three species obtained from culture collections and research laboratories were screened for their potential of heterotrophic production of lutein on two different media (Basal and Kuhl) containing glucose. While both media supported good growth and lutein formation of the seven strains in darkness, higher biomass concentrations and lutein content were achieved on Basal medium. Chlorella protothecoides CS-41 was chosen from the seven strains for further investigation due to its higher productivities of both biomass and lutein. The maximal biomass concentration and lutein content of C. protothecoides cultivated heterotrophically with 9 g L-1 glucose in a 3.7-L fermentor were respectively 4.6 g dry cells L-1 and 4.60 mg lutein g-1 dry cells on Basal medium, and 4.0 g dry cells L-1 and 4.36 mg lutein g-1 dry cells on Kuhl medium. The heterotrophic cultivation process was scaled up successfully to 30 L using a fermentor, in which the Basal medium containing 36 g L-1 glucose was used; the maximal biomass concentration of 16.4 g dry cells L-1, specific growth rate of 0.92 d-1,lutein content of 4.85 mg lutein g-1 dry cells,growth yield of 0.47 g dry cells g-1 glucose and lutein yield of 1.93 mg lutein g-1 glucose were respectively achieved. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

15.
异养细胞种子/光自养培养方法是一种可异养培养的能源微藻培养的有效方法,但已有文献尚未从工艺优化角度考察其发展潜力。为了获得较高细胞密度的用于光自养培养的种子和提高光自养培养的细胞密度与油脂产率,对异养细胞种子/光自养培养的培养基和培养条件进行了优化。结果表明,采用优化后的培养基,椭圆小球藻在摇瓶中异养培养的最高藻细胞密度可达11.04 g/L,比在初始培养基条件下提高了28.0%,在5 L发酵罐中异养培养的藻细胞密度达到73.89 g/L;在2 L柱式光生物反应器中光自养培养的藻细胞密度、油脂含量和油脂产率分别达1.62 g/L、36.34%和6.1 mg/(L·h),油脂成分主要为含C16-C18碳链的脂肪酸,是制备生物柴油的理想原料。经过优化,异养细胞种子/光自养培养这一方法能够显著地提高椭圆小球藻产油脂的能力,这进一步表明异养细胞种子/光自养培养方法有望成为可异养的能源微藻的高效培养方式。  相似文献   

16.
To narrow the differences between the results obtained from radionuclides and heavy metal ecotoxicity investigations in the laboratory and in the abandoned uranium mines, a few standardised plant bioassay procedures were selected from the literature for testing with Lemna gibba L. The bioassay procedures were tested in situ and ex situ. The laboratory culturing was performed in batch and semicontinuous modes. The results revealed that most of the standardised plant bioassay procedures require modification for the L. gibba bioassay to predict the actual effects under field conditions. L. gibba performed relatively better in the field than laboratory batch cultures despite that the batch cultures had many-fold higher nutrient concentrations than in the field. For instance, the phosphorus concentration of the mine tailing water was 0.13 ± 0.09 μg l−1 in the field, while the literature range for phosphorus in the laboratory culture media is 13.6–40 mg l−1. L. gibba growth in the laboratory batch culture was influenced by speciation changes due to consumption of nutrients, CO2 and O2 phase exchanges, and excretion of organic substances by the test plants. Semicontinuous culture modes performed significantly better than batch cultivation even after 10× dilution of the nutrient solution. The growth behaviour revealed that L. gibba exhibited intrapopulation and probiotic interaction for best performance. Growth performance of L. gibba was influenced by the anions that balanced essential cations despite equal cation concentration in the culture media; e.g., the best growth was observed in culture media that had more SO42− than Cl. Water samples from the field had higher SO42− concentrations than Cl. The test vessel material, sterilisation and axenic culturing procedures also influenced the sensitivity of the bioassay. These, for instance, and a few others are neither described nor reported in most standard Lemna tests or the literature. Thus, this work presents results of a series of tests conducted on the selected methods. Common and possible errors and corrective measures in assigning L. gibba bioassay from laboratory population levels to field community levels are discussed.  相似文献   

17.
Growth kinetics ofSaccharomyces cerevisiae in glucose syrup from cassava starch and sugarcane molasses were studied using batch and fed-batch cultivation. The optimum temperature and pH required for growth were 30°C and pH 5.5, respectively. In batch culture the productivity and overall cell yield were 0.31 g L–1 h–1 and 0.23 g cells g–1 sugar, respectively, on glucose syrup and 0.22 g L–1 h–1 and 0.18 g cells g–1 sugar, respectively, on molasses. In fed-batch cultivation, a productivity of 3.12 g L–1 h–1 and an overall cell yield of 0.52 g cells g–1 sugar in glucose syrup cultivation and a productivity of 2.33 g L–1 h–1 and an overall cell yield of 0.46 g cells g–1 sugar were achieved in molasses cultivation by controlling the reducing sugar concentration at its optimum level obtained from the fermentation model. By using an on-line ethanol sensor combined with a porous Teflon® tubing method in automating the feeding of substrate in the fed-batch culture, a productivity of 2.15 g L–1 h–1 with a yield of 0.47 g cells g–1 sugar was achieved using glucose syrup as substrate when ethanol concentration was kept at a constant level by automatic control.  相似文献   

18.
Plants were regenerated from root explants of Arabidopsis halleri (L.) O’Kane and Al-Shehbaz via a three-step procedure callus induction, induction of somatic embryos and shoot development. Callus was induced from root segments, leaflets and petiole segments after incubation for 2 weeks in Murashige and Skoog medium (MS) supplemented with 0.5 mg/l−1 (2.26 μM) 2,4-D (2,4-dichlorophenoxyacetic acid) and 0.05 mg/l−1 (0.23 μM) kinetin. Only calli developed from root segments continued to grow when transferred to a regeneration medium containing 2.0 mg/l−1 (9.8 μM) 6-γ-γ-(dimethylallylamino)-purine (2ip) and 0.05 mg/l−1 (2.68 μM) α-naphthalenacetic acid (NAA) and eventually 40 of them developed embryogenic structures. On the same medium 38 of these calli regenerated shoots. Rooting was achieved for 50 of the shoots subcultured in MS medium without hormones. The regeneration ability of callus derived from root cuttings, observed in this study, makes this technique useful for genetic transformation experiments and in vitro culture studies.  相似文献   

19.
Suspension culture of gametophytes of transgenic kelp in a photobioreactor   总被引:5,自引:0,他引:5  
Gao J  Zhang Y  Wang H  Qin S 《Biotechnology letters》2005,27(14):1025-1028
Transgenic Laminaria japonica gametophytes producing a recombinant tissue-type plasminogen activator (rtPA) protein, which is an effective third-generation thrombolytic agent for acute myocardial infarction (AMI), were cultured in an illuminated bubble column bioreactor. A maximum final dry cell weight of 1120 mg l−1 was obtained in batch culture with an initial dry cell weight of 126 mg l−1 and with aeration rate of 1.2 l air min−1 l−1 culture, nitrate at 1.5 mM and phosphate at 0.17 mM. The yield of rtPA was 56 μg g−1 dry cell wt. This is the first report regarding cultivation of a transgenic macroalga in a bioreactor.Revisions requested 27 January 2005 and 14 April 2005; Revisions received 6 April 2005 and 17 May 2005  相似文献   

20.
The nitrogen uptake and growth capabilities of the potentially harmful, raphidophycean flagellate Heterosigma akashiwo (Hada) Sournia were examined in unialgal batch cultures (strain CCMP 1912). Growth rates as a function of three nitrogen substrates (ammonium, nitrate and urea) were determined at saturating and sub-saturating photosynthetic photon flux densities (PPFDs). At saturating PPFD (110 μE m−2 s−1), the growth rate of H. akashiwo was slightly greater for cells grown on NH4+ (0.89 d−1) compared to cells grown on NO3 or urea, which had identical growth rates (0.82 d−1). At sub-saturating PPFD (40 μE m−2 s−1), both urea- and NH4+-grown cells grew faster than NO3-grown cells (0.61, 0.57 and 0.46 d−1, respectively). The N uptake kinetic parameters were investigated using exponentially growing batch cultures of H. akashiwo and the 15N-tracer technique. Maximum specific uptake rates (Vmax) for unialgal cultures grown at 15 °C and saturating PPFD (110 μE m−2 s−1) were 28.0, 18.0 and 2.89 × 10−3 h−1 for NH4+, NO3 and urea, respectively. The traditional measure of nutrient affinity—the half saturation constants (Ks) were similar for NH4+ and NO3 (1.44 and 1.47 μg-at N L−1), but substantially lower for urea (0.42 μg-at N L−1). Whereas the α parameter (α = Vmax/Ks), which is considered a more robust indicator for substrate affinity when substrate concentrations are low (<Ks), were 19.4, 12.2 and 6.88 × 10−3 h−1/(μg-at N L−1) for NH4+, NO3 and urea, respectively. These laboratory results demonstrate that at both saturating and sub-saturating N concentrations, N uptake preference follows the order: NH4+ > NO3 > urea, and suggests that natural blooms of H. akashiwo may be initiated or maintained by any of the three nitrogen substrates examined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号