首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Abstract: Expression of the neurotrophin-3 (NT-3) receptor (TrkC) and the effects of NT-3 on signal transduction were investigated in highly enriched populations of embryonic rat hippocampal pyramidal neurons grown in bilaminar cultures. PCR analysis revealed that the predominant trkC isoform is K1, which lacks an insert in the kinase domain. Polyclonal TrkC-specific antibodies stained >90% of the neurons and revealed a single ~145-kDa protein in immunoblots of extracts from adult hippocampus and pyramidal neuron cultures. Addition of NT-3 (50 mg/ml) to these cultures induced the tyrosine phosphorylation of TrkC but not TrkB, as determined by anti-phosphotyrosine staining of immunoprecipitates; thus, all the effects of NT-3 are mediated through TrkC. NT-3 also increased the tyrosine phosphorylation of 42-, 44-, 49-, 55-, 95-, and 145-kDa proteins; the pattern induced by brain-derived neurotrophic factor (BDNF) was similar but not identical to that induced by NT-3, suggesting that subtle differences may exist in signaling by TrkB and TrkC receptors. Immunoprecipitation of p21ras from 32P-prelabeled cells showed that NT-3 increased the level of the GTP-bound form of the protein threefold over the control within 5 min. Mitogen-activated protein (MAP) kinase activity was maximally elevated by NT-3 within 2 min and then returned slowly toward baseline over the next 60 min. Tyrosine phosphorylation of phospholipase C-γ increased rapidly after NT-3, suggesting that this enzyme becomes activated. Consistent with this, the neurotrophin rapidly increased protein kinase C activity as well as intracellular Ca2+ levels. The effects of both NT-3 and BDNF on Ca2+ levels were attenuated in Ca2+-free medium, suggesting that both neurotrophins increase Ca2+ flux across the plasma membrane as well as release from internal stores. NT-3 also increased c-Fos expression in >80% of the cells; the effect peaked at 30 minand declined to baseline by 120 min. Despite the activation of ras-MAP kinase and phosphoinositide signaling pathways, neither NT-3 nor BDNF alone or in combination could sustain hippocampal pyramidal neurons deprived of glial support. We conclude that in this system NT-3 and BDNF do not appear to be acting as classical “neurotrophic” factors and that activation of the MAP kinase pathway is insufficient for the promotion of neuronal survival.  相似文献   

2.
The neurotrophins are a family of proteins that promote neuronal survival and neurite outgrowth during development and can also enhance the regeneration of injured adult neurons. The local and continuous delivery of these proteins at the site of injury is problematic, since this requires repeated intraparenchymal injections or the use of invasive canula-micropump devices. In the present study we report the generation and characterization of an adenoviral vector for a member of the neurotrophins, neurotrophin-3 (Ad-NT-3). Using Ad-NT-3, we examined the expression and biological activity of NT-3 in dorsal root ganglia (DRG) explant cultures. Gene transfer with Ad-NT-3 results in the synthesis of genuine NT-3 and in a dosage-dependent neurite outgrowth response in DRG explants. Transduction of DRG explants with a viral vector dosage of 5 × 105 to 5 × 106 plaque-forming units induced the formation of a dense halo of neurites comparable to outgrowth observed following the addition of 100 ng/mL exogenous NT-3. In addition, a single infection with Ad-NT-3 produced biologically active NT-3 for at least 20 days in culture, as evidenced by continued neurite extension. This indicates that adenoviral vector-mediated expression of NT-3 results in high-level production of biologically active NT-3 and could therefore be used as a strategy to promote the regeneration of injured peripheral and central nerve projections. © 1997 John Wiley & Sons, Inc. J Neurobiol 33: 172–184, 1997  相似文献   

3.
Neurotrophin-4 (NT-4) is a member of a family of neurotrophic factors, the neurotrophins, that control survival and differentiation of vertebrate neurons (2–4). Besides being the most recently discovered neurotrophin in mammals, and the least well understood, several aspects distinguish NT-4 from other members of the neurotrophin family. It is the most divergent member and, in contrast to the other neurotrophins, its expression is ubiquitous and appears to be less influenced by environmental signals. NT-4 seems to have the unique requirement of binding to the lowaffinity neurotrophin receptor (p75LNGFR) for efficient signalling and retrograde transport in neurons. Moreover, while all other neurotrophin knock-outs have proven lethal during early postnatal development, mice deficient in NT-4 have so far only shown minor cellular deficits and develop normally to adulthood. Is NT-4 a recent addition to the neurotrophic factor repertoire in search of a crucial function, or is it an evolutionary relic, a kind of wisdom tooth of the neurotrophin family?  相似文献   

4.
Abstract: Long-term survival of cultured rat cerebellar granule neurons requires depolarizing concentrations of potassium (high potassium; 25 mM KCl). A high-potassium culturing condition has been reported to increase the intracellular calcium concentration ([Ca2+]i) and the expression of brain-derived neurotrophic factor (BDNF), which in turn induces the expression of neurotrophin-3 (NT-3) in these neurons. We therefore examined the neurotrophic effect of these two neurotrophins in low-potassium (5 mM) cultures and their neuroprotective capabilities against sodium nitroprusside-induced neurotoxicity in both low- and high-potassium cultures. Neuronal survival and neurotrophic effects were monitored by [3H]ouabain binding and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assays. In low-potassium cultures, the neurotrophic effect of BDNF approached that found in high-potassium cultures but was much more robust than that of NT-3. In contrast, undifferentiated neurons cultured in high-potassium medium were much less responsive to BDNF and not responsive at all to NT-3. Induction of nitroprusside neurotoxicity occurred more readily in low- than in high-potassium cultures. BDNF, NT-3, and a high potassium concentration, alone or in combination, were unable to protect neurons treated with nitroprusside at 50 or 100 µM. However, the neurotoxicity of a lower dose of nitroprusside (10 µM) was reversed by the combined actions of these two neurotrophins in low-potassium cultures and by BDNF alone in high-potassium cultures. Because nitroprusside neurotoxicity is less robust in high-potassium cultures, high-potassium-induced BDNF expression and subsequent NT-3 expression may participate in its neuroprotection and neurotrophism in these cultures. Also, we found that toxic doses of nitroprusside antagonized KCl- and NMDA-induced rises in [Ca2+]i, suggesting that this effect is related to nitroprusside-induced neurotoxicity.  相似文献   

5.
D Collazo  H Takahashi  R D McKay 《Neuron》1992,9(4):643-656
The expression of the neurotrophins and trk receptors in the hippocampus has directed attention toward their roles in the development and maintenance of this region. We have examined the effects of the neurotrophins NT-3, BDNF, and NGF in cultures of developing rat hippocampal cells by two criteria: rapid induction of c-fos and neurotrophic responses. The selective induction of c-fos mRNA suggests the presence of functional receptors for NT-3 and BDNF, but not NGF, in embryonic hippocampal cultures. The NT-3-responsive cells were localized in pyramidal neurons of areas CA1 through CA3 and dentate granular and hilar cells of postnatal organotypic slices, as detected by c-Fos immunocytochemistry. In addition to immediate early responses, NT-3 caused a 10-fold increase in the number of cells expressing the neuronal antigen calbindin-D28k. This increase was dose dependent, with maximal stimulation at 10 ng/ml. In contrast, BDNF elicited small but significant calbindin responses. These results indicate biological responses to NT-3 in the CNS and suggest roles for for this neurotrophin during hippocampal neurogenesis.  相似文献   

6.
We examine developmental changes in the responsiveness of rat vestibular ganglion neurons (VGNs) to two neurotrophic factors (NTFs), brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3) and investigate the protective effects of these NTFs against ototoxic drugs during postnatal development in dissociated cultures. VGNs were obtained from rats on postnatal days (P) 1, 3, 7 and 14. BDNF facilitated neuronal survival as well as neurite sprouting of VGNs obtained from younger rats (P1 and P3), whereas these effects were not observed in older rats (P7 and P14). BDNF was also effective in facilitating neurite extension in VGNs at each of the postnatal ages. NT-3 also facilitated neuronal survival and neurite extension of VGNs from younger rats but these effects were significantly smaller than those of BDNF (p?<?0.05). The protective effects of BDNF and NT-3 against ototoxic drugs, gentamicin and cisplatin, were also age-dependent: they were effective for neuronal survival, neurite sprouting and neurite extension in VGNs from younger rats, whereas these effects tended to disappear in VGNs from older rats. Analysis of the changes in the expression of the receptors of NTFs revealed that expression of TrkB and TrkC proteins and their mRNA did not change during the developmental period, whereas expression of p75NTR protein was down-regulated together with that of p75NTR mRNA during the developmental period. Developmental changes in the responsiveness to exogenous NTFs in VGNs, which is not caused by the changes of their receptors but probably caused by changes in the intracellular signaling pathways, should be taken into consideration in the prevention of neuronal degeneration caused by ototoxic drugs.  相似文献   

7.
The response of motoneurons to neurotrophins   总被引:7,自引:0,他引:7  
The ongoing search for neurotrophic factors for motoneurons has led to the identification of a number of molecules which regulate motoneuron survival and function. Among these factors, the neurotrophins brain derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3) and NT-4/5 but not nerve growth factor (NGF), can prevent embryonic and postnatal motoneuron cell death in a variety of experimental paradigms. Analysis of expression of p75, trkB and trkC—components of the neurotrophin receptors—supports a potential physiological role for these factors as muscle- and glial-derived trophic factors for motoneurons. However, the survival of motoneurons during embryonic development is not reduced in the absence of BDNF, NT-3 or NT-4, as revealed by gene knockout experiments. This points to the involvement of additional trophic factors in the regulation of embryonic and postnatal motoneuron survival. The purpose of this review is to bring together the often prophetic observations from earlier studies—prior to the identification and characterization of these neurotrophins—with more recent results. Special issue dedicated to Dr. Hans Thoenen.  相似文献   

8.
Abstract: Cerebellar granule neurons maintained in medium containing serum and 25 mM K+ reliably undergo an apoptotic death when switched to serum-free medium with 5 mM K+. New mRNA and protein synthesis and formation of reactive oxygen intermediates are required steps in K+ deprivation-induced apoptosis of these neurons. Here we show that neurotrophins, members of the nerve growth factor gene family, protect from K+/serum deprivation-induced apoptotic death of cerebellar granule neurons in a temporally distinct manner. Switching granule neurons, on day in vitro (DIV) 4, 10, 20, 30, or 40, from high-K+ to low-K+/serum-free medium decreased viability by >50% when measured after 30 h. Treatment of low-K+ granule neurons at DIV 4 with nerve growth factor, brain-derived neurotrophic factor (BDNF), neurotrophin-3, or neurotrophin-4/5 (NT-4/5) demonstrated concentration-dependent (1–100 ng/ml) protective effects only for BDNF and NT-4/5. Between DIV 10 and 20, K+-deprived granule neurons showed decreasing sensitivity to BDNF and no response to NT-4/5. Cerebellar granule neuron death induced by K+ withdrawal at DIV 30 and 40 was blocked only by neurotrophin-3. BDNF and NT-4/5 also circumvented glutamate-induced oxidative death in DIV 1–2 granule neurons. Granule neuron death caused by K+ withdrawal or glutamate-triggered oxidative stress was, moreover, limited by free radical scavengers like melatonin. Neurotrophin-protective effects, but not those of antioxidants, were blocked by selective inhibitors of phosphatidylinositol 3-kinase or the mitogen-activated protein kinase pathway, depending on the nature of the oxidant stress. These observations indicate that the survival-promoting effects of neurotrophins for central neurons, whose cellular antioxidant defenses are challenged, require activation of distinct signal transduction pathways.  相似文献   

9.
The ability of neurotrophin-4/5 (NT-4/5), brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3), and nerve growth factor (NGF) to promote survival of postnatal rat vestibular ganglion neurons (VGNs) was examined in dissociated cell cultures. Of the four neurotrophins, NT-4/5 and BDNF were equally effective but more potent than NT-3 in promoting the survival of VGNs. In contrast, NGF showed no detectable effects. As expected, TrkB-IgG (a fusion protein of extracellular domain of TrkB and Fc domain of human immunoglobulin G) specifically inhibited the survival-promoting effects by NT-4/5 or BDNF and TrkC-IgG fusion protein completely blocked that of NT-3. Immunohistochemistry with TrkB, TrkA, and p75 antisera revealed that VGNs made TrkB and p75 proteins, but not TrkA protein. Ototoxic therapeutic drugs such as cisplatin and gentamicin often induce degeneration of hair cells and ganglion neurons in both auditory and vestibular systems that leads to impairment of hearing and balance. When cisplatin and gentamicin were added to the dissociated VGN culture in which the hair cells were absent, additional cell death of VGNs was induced, suggesting that the two ototoxins may have a direct neurotoxic effect on ganglion neurons in addition to their known toxicity on hair cells. However, if the cultures were co-treated with neurotrophins, NT-4/5, BDNF, and NT-3, but not NGF, prevented or reduced the neurotoxicity of the two ototoxins. Thus, the three neurotrophins are survival factors for VGNs and are implicated in the therapeutic prevention of VGN loss caused by injury and ototoxins. © 1995 John Wiley & Sons, Inc.  相似文献   

10.
The development of cerebellar cortex is strongly impaired by thyroid hormone (T3) deficiency, leading to altered migration, differentiation, synaptogenesis, and survival of neurons. To determine whether alteration in the expression of neurotrophins and/or their receptors may contribute to these impairments, we first analyzed their expression using a sensitive RNAse protection assay and in situ hybridization; second, we administered the deficient neurotrophins to hypothyroid animals. We found that early hypothyroidism disrupted the developmental pattern of expression of the four neurotrophins, leading to relatively higher levels of NGF and neurotrophin 4/5 mRNAs and to a severe deficit in NT-3 and brain-derived neurotrophic factor (BDNF) mRNA expression, without alteration in the levels of the full-length tyrosine kinase (trk) B and trkC receptor mRNAs. Grafting of P3 hypothyroid rats with cell lines expressing high levels of neurotrophin 3 (NT-3) or BDNF prevented hypothyroidism-induced cell death in neurons of the internal granule cell layer at P15. In addition, we found that NT-3, but not BDNF, induced the differentiation and/or migration of neurons in the external granule cell layer, stimulated the elaboration of the dendritic tree by Purkinje cells, and promoted the formation of the mature pattern of synaptic afferents to Purkinje cell somas. Thus, our results indicate that both granule and Purkinje neurons require appropriate levels of NT-3 for normal development in vivo and suggest that T3 may regulate the levels of neurotrophins to promote the development of cerebellum.  相似文献   

11.
Brain-derived neurotrophic factor (BDNF) and neurotrophin-4 (NT-4) are two neurotrophins that play distinct roles in geniculate (taste) neuron survival, target innervation, and taste bud formation. These two neurotrophins both activate the tropomyosin-related kinase B (TrkB) receptor and the pan-neurotrophin receptor p75. Although the roles of these neurotrophins have been well studied, the degree to which BDNF and NT-4 act via TrkB to regulate taste development in vivo remains unclear. In this study, we compared taste development in TrkB−/− and Bdnf−/−/Ntf4−/− mice to determine if these deficits were similar. If so, this would indicate that the functions of both BDNF and NT-4 can be accounted for by TrkB-signaling. We found that TrkB−/− and Bdnf−/−/Ntf4−/− mice lose a similar number of geniculate neurons by E13.5, which indicates that both BDNF and NT-4 act primarily via TrkB to regulate geniculate neuron survival. Surprisingly, the few geniculate neurons that remain in TrkB−/− mice are more successful at innervating the tongue and taste buds compared with those neurons that remain in Bdnf−/−/Ntf4−/− mice. The remaining neurons in TrkB−/− mice support a significant number of taste buds. In addition, these remaining neurons do not express the TrkB receptor, which indicates that either BDNF or NT-4 must act via additional receptors to influence tongue innervation and/or targeting.  相似文献   

12.
Neurotrophins play an essential role in nerve systems. Recent reports indicated that neurotrophins [nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3), and neurotrophin-4/5 (NT-4/5)] have numerous effects on non-neural cells, especially on immune cells. However, whether lung cells express neurotrophins and/or their receptors (TrkA for NGF, TrkB for BDNF and NT-4/5, and TrkC for NT-3) has never been systematically investigated. We investigated constitutive expression of neurotrophin family and their Trk receptor family in alveolar macrophages and other peripheral lung cells of mice. New findings were: (1) RT-PCR for neurotrophins and their receptors detected NT-3 and NT-4/5 in alveolar macrophages, BDNF, NT-4/5, trkA, the truncated form of trkB, and trkC in lung homogenate, but no trks in alveolar macrophages, (2) immunohistochemistry for neurotrophin receptors detected TrkA in capillary cells, the truncated form of TrkB, and TrkC in interstitial macrophages, (3) immunoelectron microscopy for TrkC revealed expression of TrkC on the surface of interstitial macrophages, and (4) in situ hybridization for neurotrophins detected BDNF in interstitial macrophages and alveolar type I cells, NT-3 in alveolar macrophages, and NT-4/5 in alveolar and interstitial macrophages. These findings indicate that a previously unknown signal trafficking occurs through neurotrophins in peripheral lung.  相似文献   

13.
Regulation of neuropeptide expression in the brain by neurotrophins   总被引:3,自引:0,他引:3  
Neurotrophins, which are structurally related to nerve growth factor, have been shown to promote survival of various neurons. Recently, we found a novel activity of a neurotrophin in the brain: Brain-derived neurotrophic factor (BDNF) enhances expression of various neuropeptides. The neuropeptide differentiation activity was then compared among neurotrophins both in vivo and in vitro. In cultured neocortical neurons, BDNF and neurotrophin-5 (NT-5) remarkably increased levels of neuropeptide Y and somatostatin, and neurotrophin-3 (NT-3) also increased these peptides but required higher concentrations. At elevating substance P, however, NT-3 was as potent as BDNF. In contrast, NGF had negligible or no effect. Neurotrophins administered into neonatal brain exhibited slightly different potencies for increasing these neuropeptides: The most marked increase in neuropeptide Y levels was obtained in the neocortex by NT-5, whereas in the striatum and hippocampus by BDNF, although all three neurotrophins increased somatostatin similarly in all the brain regions examined. Overall spatial patterns of the neuropeptide induction were similar among the neurotrophins. Neurons in adult rat brain can also react with the neurotrophins and alter neuropeptide expression in a slightly different fashion. Excitatory neuronal activity and hormones are known to change expression of neurotrophins. Therefore, neurotrophins, neuronal activity, and hormones influence each other and all regulate neurotransmitter/peptide expression in developing and mature brain. Physiological implication of the neurotransmitter/peptide differentiation activities is also discussed.  相似文献   

14.
15.
1. Aim of the present paper is to study the expression of N-Methyl-D-Aspartate receptor (NMDAR) subunits NR2A and NR2B within mouse visual cortex.2. To investigate the influence of neurotrophic factor of NGF family (neurotrophins) on NMDAR expression we used mutant mice carrying a deletion in the gene for brain-derived neurotrophic factor (BDNF), a well-known neurotrophin expressed in visual cortex.3. Western blot and immunohistochemistry were performed at postnatal day P12–14, P21–23, and adulthood showing that both subunits change during postnatal development.4. Absence of BDNF induced a reduction of NR2A level. This effect was specific since the other subunit investigated, NR2B, was not affected in mutant mice.5. We conclude that endogenous BDNF modulates NMDAR expression in the developing visual cortex.  相似文献   

16.

Background

Pulmonary sarcoidosis is an inflammatory disease, characterized by an accumulation of CD4+ lymphocytes and the formation of non-caseating epithelioid cell granulomas in the lungs. The disease either resolves spontaneously or develops into a chronic disease with fibrosis. The neurotrophins nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3) have been suggested to be important mediators of inflammation and mediate tissue remodelling. In support of this, we have recently reported enhanced NGF levels in the airways of patients with pulmonary sarcoidosis. However, less is known about levels of BDNF and NT-3, and moreover, knowledge in the cellular sources of neurotrophins and the distribution of the corresponding neurotrophin receptors in airway tissue in sarcoidosis is lacking.

Methods

The concentrations of NGF, BDNF and NT-3 in bronchoalveolar lavage fluid (BALF) of 41 patients with newly diagnosed pulmonary sarcoidosis and 27 healthy controls were determined with ELISA. The localization of neurotrophins and neurotrophin receptors were examined by immunohistochemistry on transbronchial lung biopsies from sarcoidosis patients.

Results

The sarcoidosis patients showed significantly enhanced NT-3 and NGF levels in BALF, whereas BDNF was undetectable in both patients and controls. NT-3 levels in BALF were found higher in patients with non-Löfgren sarcoidosis as compared to patients with Löfgren''s syndrome, and in more advanced disease stage. Epithelioid cells and multinucleated giant cells within the sarcoid granulomas showed marked immunoreactivity for NGF, BDNF and NT-3. Also, immunoreactivity for the neurotrophin receptor TrkA, TrkB and TrkC, was found within the granulomas. In addition, alveolar macrophages showed positive immunoreactivity for NGF, BDNF and NT-3 as well as for TrkA, TrkB and TrkC.

Conclusions

This study provides evidence of enhanced neurotrophin levels locally within the airways of patients with sarcoidosis. Findings suggest that sarcoid granuloma cells and alveolar macrophages are possible cellular sources of, as well as targets for, neurotrophins in the airways of these patients.  相似文献   

17.
To understand epigenetic regulation of neurotrophins in Neuro-2a mouse neuroblastoma cells, we investigated the alteration of CpG methylation of brain-derived neurotrophic factor (BDNF) promoter I and neurotrophin-3 (NT-3) promoter IB and that of histone modification in Neuro-2a cells. Bisulfite genomic sequencing showed that the CpG sites of BDNF promoter I were methylated in non-treated Neuro-2a cells and demethylated following 5-aza-2′-deoxycytidine (5-aza-dC) treatment. In contrast, methylation status of the NT-3 promoter IB did not change by 5-aza-dC treatment in Neuro-2a cells. Furthermore, we demonstrated that BDNF exon I-IX mRNA was induced by trichostatin A (TSA) treatment. However, NT-3 exon IB-II mRNA was not induced by TSA treatment. Chromatin immunoprecipitation assays showed that the levels of acetylated histones H3 and H4 on BDNF promoter I were increased by TSA. These results demonstrate that DNA methylation and/or histone modification regulate BDNF gene expression, but do not regulate NT-3 gene expression in Neuro-2a cells.  相似文献   

18.
The nerve growth factor (NGF) family of neurotrophins provides a substantial part of the normal trophic support for sensory neurons during development. Although these neurotrophins, which include Brain-Derived Neurotrophic Factor (BDNF), Neurotrophin-3 (NT-3), and Neurotrophin-4 (NT-4), continue to be expressed into adulthood, there is little evidence that they are survival factors for adult neurons. Here we have examined the age-dependent neurotrophic requirements of a specialized type of mechanoreceptive neuron, called a D-hair receptor, in the dorsal root ganglion (DRG). Studies using knockout mice have demonstrated that the survival of D-hair receptors is dependent upon both NT-3 and NT-4. Here, we show that the time period when D-hair receptors require these two neurotrophins is different. Survival of D-hair receptors depends on NT-3 early in postnatal development and NT-4 later in the mature animal. The age-dependent loss of D-hair neurons in older NT-4 knockout mice was accompanied by a large reduction (78%) in neurons positive for the NT-4 receptor (trkB) together with neuronal apoptosis in the DRG. This is the first evidence that sensory neurons have a physiological requirement for a single neurotrophin for their continued survival in the adult.  相似文献   

19.
Peripheral nerve injury disrupts the normal functions of sensory and motor neurons by damaging the integrity of axons and Schwann cells. In contrast to the central nervous system, the peripheral nervous system possesses a considerable capacity for regrowth, but regeneration is far from complete and functional recovery rarely returns to pre-injury levels. During development, the peripheral nervous system strongly depends upon trophic stimulation for neuronal differentiation, growth and maturation. The perhaps most important group of trophic substances in this context is the neurotrophins (NGF, BDNF, NT-3 and NT-4/5), which signal in a complex spatial and timely manner via the two structurally unrelated p75NTR and tropomyosin receptor kinase (TrkA, Trk-B and Trk-C) receptors. Damage to the adult peripheral nerves induces cellular mechanisms resembling those active during development, resulting in a rapid and robust increase in the synthesis of neurotrophins in neurons and Schwann cells, guiding and supporting regeneration. Furthermore, the injury induces neurotrophin-mediated changes in the dorsal root ganglia and in the spinal cord, which affect the modulation of afferent sensory signaling and eventually may contribute to the development of neuropathic pain. The focus of this review is on the expression patterns of neurotrophins and their receptors in neurons and glial cells of the peripheral nervous system and the spinal cord. Furthermore, injury-induced changes of expression patterns and the functional consequences in relation to axonal growth and remyelination as well as to neuropathic pain development will be reviewed.  相似文献   

20.
Brain-derived neurotrophic factor (BDNF) and Neurotrophin 3 (NT-3) are members of the neurotrophin family and are expressed in the developing and adult tongue papillae. BDNF null-mutated mice exhibit specific impairments related to innervation and development of the gustatory system while NT-3 null mice have deficits in their lingual somatosensory innervation. To further evaluate the functional specificity of these neurotrophins in the peripheral gustatory system, we generated double BDNF/NT-3 knockout mice and compared the phenotype to BDNF?/? and wild-type mice. Taste papillae morphology was severely distorted in BDNF?/?xNT-3?/? mice compared to single BDNF?/? and wild-type mice. The deficits were found throughout the tongue and all gustatory papillae. There was a significant loss of fungiform papillae and the papillae were smaller in size compared to BDNF?/? and wild-type mice. Circumvallate papillae in the double knockouts were smaller and did not contain any intraepithelial nerve fibers. BDNF?/?xNT-3?/? mice exhibited additive losses in both somatosensory and gustatory innervation indicating that BDNF and NT-3 exert specific roles in the innervation of the tongue. However, the additional loss of fungiform papillae and taste buds in BDNF?/?xNT-3?/? mice compared to single BDNF knockout mice indicate a synergistic functional role for both BDNF-dependent gustatory and NT-3-dependent somatosensory innervations in taste bud and taste papillae innervation and development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号