首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Selection at linked sites has important consequences for the properties of neutral variation and for tests of the predictions of the neutral theory of molecular evolution. We review the theory of the effect of adaptive gene substitutions on neutral variability at linked sites (hitchhiking or selective sweeps) and discuss theoretical results on the effect of selection against deleterious alleles on variation at linked sites (background selection). InDrosophila melanogaster there is a clear relation between the frequency of recombination in a given region of the chromosome and the amount of natural variability in that region. Attempts to predict this relation have given rise to models of selective sweeps and background selection. We describe possible methods of discriminating between these models, and also discuss the probable strong influence of selective sweeps on variation in largely nonrecombining genomes, with particular reference toEscherichia coll. Finally we present some unresolved questions and possible directions for future research.  相似文献   

2.
Reto Burri 《Molecular ecology》2017,26(15):3853-3856
Selection has a deep impact on the distribution of genetic diversity and population differentiation along the genome (the genomic landscapes of diversity and differentiation), reducing diversity and elevating differentiation not only at the sites it targets, but also at linked neutral sites. Fuelled by the high‐throughput sequencing revolution, these genomic footprints of selection have been extensively exploited over the past decade with the aim to identify genomic regions involved in adaptation and speciation. However, while this research has shown that the genomic landscapes of diversity and differentiation are usually highly heterogeneous, it has also led to the increasing realization that this heterogeneity may evolve under processes other than adaptation or speciation. In particular, instead of being an effect of selective sweeps or barriers to gene flow, accentuated differentiation can evolve by any process reducing genetic diversity locally within the genome (Charlesworth, 1998 ), including purifying selection at linked sites (background selection). In particular, in genomic regions where recombination is infrequent, accentuated differentiation can evolve as a by‐product of diversity reductions unrelated to adaptation or speciation (Cruickshank & Hahn, 2014 ; Nachman & Payseur, 2012 ; Noor & Bennett, 2009 ). In such genomic regions, linkage extends over physically larger genome stretches, and selection affects a particularly high number of linked neutral sites. Even though the effects of selection on linked neutral diversity (linked selection) within populations are well documented (Cutter & Payseur, 2013 ), recent observations of diversity and differentiation landscapes that are highly correlated even among independent lineages suggest that the effects of long‐term linked selection may have a deeper impact on the evolution of the genomic landscapes of diversity and differentiation than previously anticipated. The study on Saxicola stonechats by Van Doren et al. ( 2017 ) reported in the current issue of Molecular Ecology lines in with a rapidly expanding body of evidence in this direction. Correlations of genomic landscapes extending from within stonechats to comparisons with Ficedula flycatchers add to recent insights into the timescales across which the effects of linked selection persist. Absent and inverted correlations of genomic landscapes in comparisons involving an island taxon, on the other hand, provide important empirical clues about the role of demographic constraints in the evolution of the genomic landscapes of diversity and differentiation.  相似文献   

3.
Genetic diversity is shaped by mutation, genetic drift, gene flow, recombination, and selection. The dynamics and interactions of these forces shape genetic diversity across different parts of the genome, between populations and species. Here, we have studied the effects of linked selection on nucleotide diversity in outcrossing populations of two Brassicaceae species, Arabidopsis lyrata and Capsella grandiflora, with contrasting demographic history. In agreement with previous estimates, we found evidence for a modest population size expansion thousands of generations ago, as well as efficient purifying selection in C. grandiflora. In contrast, the A. lyrata population exhibited evidence for very recent strong population size decline and weaker efficacy of purifying selection. Using multiple regression analyses with recombination rate and other genomic covariates as explanatory variables, we can explain 47% of the variance in neutral diversity in the C. grandiflora population, while in the A. lyrata population, only 11% of the variance was explained by the model. Recombination rate had a significant positive effect on neutral diversity in both species, suggesting that selection at linked sites has an effect on patterns of neutral variation. In line with this finding, we also found reduced neutral diversity in the vicinity of genes in the C. grandiflora population. However, in A. lyrata no such reduction in diversity was evident, a finding that is consistent with expectations of the impact of a recent bottleneck on patterns of neutral diversity near genes. This study thus empirically demonstrates how differences in demographic history modulate the impact of selection at linked sites in natural populations.  相似文献   

4.
We examined the relationship between survival of roe deer (Capreolus capreolus) fawns at Trois Fontaines, Champagne-Ardennes, France, and factors related to bed-site selection (predator avoidance and thermoregulation) and maternal food resources (forage availability in the maternal home range). Previous studies have demonstrated that at small scales, the young of large herbivores select bed sites independently from their mothers, although this selection takes place within the limits of their mother’s home range. Fawn survival was influenced largely by the availability of good bed sites within the maternal home range, not by the fawn’s selection of bed sites; however, selection for thermal cover when selecting bed sites positively influenced survival of young fawns. Typical features of a good home range included close proximity to habitat edges, which is related to forage accessibility for roe deer. The availability of bed sites changed as fawns aged, probably due to an increased mobility of the fawn or a different use of the home range by the mother; sites offering high concealment and thermal protection became less available in favor of areas with higher forage accessibility. Despite the minor influence of bed-site selection on survival, roe deer fawns strongly selected their bed sites according to several environmental factors linked to predator avoidance and thermoregulation. Fawns selected for sites providing concealment, light penetration, and avoided signs of wild boar (Sus scrofa) activity. Avoidance of sites with high light penetration by young fawns positively affected their survival, confirming a negative effect on thermoregulation due to reduced thermal cover. Selection for light penetration by older fawns was less clear. We discuss these results in the context of cross-generational effects in habitat selection across multiple scales, and the potential influence of the ‘ghost of predation past’.  相似文献   

5.
A major issue in evolutionary biology is explaining patterns of differentiation observed in population genomic data, as divergence can be due to both direct selection on a locus and genetic hitchhiking. “Divergence hitchhiking” (DH) theory postulates that divergent selection on a locus reduces gene flow at physically linked sites, facilitating the formation of localized clusters of tightly linked, diverged loci. “Genome hitchhiking” (GH) theory emphasizes genome‐wide effects of divergent selection. Past theoretical investigations of DH and GH focused on static snapshots of divergence. Here, we used simulations assessing a variety of strengths of selection, migration rates, population sizes, and mutation rates to investigate the relative importance of direct selection, GH, and DH in facilitating the dynamic buildup of genomic divergence as speciation proceeds through time. When divergently selected mutations were limiting, GH promoted divergence, but DH had little measurable effect. When populations were small and divergently selected mutations were common, DH enhanced the accumulation of weakly selected mutations, but this contributed little to reproductive isolation. In general, GH promoted reproductive isolation by reducing effective migration rates below that due to direct selection alone, and was important for genome‐wide “congealing” or “coupling” of differentiation (FST) across loci as speciation progressed.  相似文献   

6.
Barnacles were sampled from various microhabitats in the rocky intertidal at multiple sites in two years. At sites in which there were large differences among microhabitats in temperature profiles, Mpi genotype frequencies were consistently and significantly different. Genotype frequencies for another allozyme locus (Gpi) as well as a DNA marker shown to be neutral (the mtDNA control region) were statistically homogeneous among thermal microhabitats at all sites in both years. The data indicate that temperature and/or desiccation mediated selection is operating at Mpi or a linked locus and that Mpi genotypes experience differential mortality in the various habitat types. If the relative fitness of genotypes is dependent on habitat type, the Mpi polymorphism may be actively maintained by a Levene model of balancing selection (Levene 1953). Because barnacle larvae are produced in abundance each year and spend five to eight weeks dispersing in the water column, there is little opportunity for the accumulation of adaptive divergence over the environmental grain size relevant in intertidal habitats. The Mpi polymorphism may be an important component of a suite of traits involved in the adaptation of barnacles to heterogeneous environments. Due to the relatively high concentration of mannose in a variety of algal groups, the metabolism of mannose may substantially affect individual performance and fitness in this and other species that feed on algae and phytoplankton. Because the Mpi locus is one of the most strongly polymorphic in marine organisms, these findings may be relevant for a diversity of other such species.  相似文献   

7.
8.
《Fly》2013,7(4):270-272
Recombination restriction between evolving sex chromosomes leads to the degeneration of the chromosome that is present only in the heterogametic sex (the Y chromosome in XY species). The evolutionary forces driving Y chromosome degeneration, however, are still under debate and include positive and negative selection models. In a recent study, we showed that the rate of accumulation of loss-of-function mutations on the neo-Y chromosome of Drosophila miranda is compatible with the process of Muller's ratchet, the stochastic loss of the best mutational class of individuals from a small asexual population. Purifying selection at amino acid sites can accelerate the ratchet, and the speed of degeneration depends on the number of genes still present on the evolving Y chromosome. Our study shows that Y chromosome degeneration does not require the action of selective sweeps at linked sites, and can take place under realistic parameters of purifying selection only.  相似文献   

9.
Payseur BA  Nachman MW 《Gene》2002,300(1-2):31-42
Theoretical and empirical work indicates that patterns of neutral polymorphism can be affected by linked, selected mutations. Under background selection, deleterious mutations removed from a population by purifying selection cause a reduction in linked neutral diversity. Under genetic hitchhiking, the rise in frequency and fixation of beneficial mutations also reduces the level of linked neutral polymorphism. Here we review the evidence that levels of neutral polymorphism in humans are affected by selection at linked sites. We then discuss four approaches for distinguishing between background selection and genetic hitchhiking based on (i) the relationship between polymorphism level and recombination rate for neutral loci with high mutation rates, (ii) relative levels of variation on the X chromosome and the autosomes, (iii) the frequency distribution of neutral polymorphisms, and (iv) population-specific patterns of genetic variation. Although the evidence for selection at linked sites in humans is clear, current methods and data do not allow us to clearly assess the relative importance of background selection and genetic hitchhiking in humans. These results contrast with those obtained for Drosophila, where the signals of positive selection are stronger.  相似文献   

10.
Understanding the emergence of species through the process of ecological speciation is a central question in evolutionary biology which also has implications for conservation and management. Lake trout (Salvelinus namaycush) is renowned for the occurrence of different ecotypes linked to resource and habitat use throughout North America. We aimed to unravel the fine genetic structure of the four lake trout ecotypes in Lake Superior. A total of 486 individuals from four sites were genotyped at 6822 filtered SNPs using RADseq technology. Our results revealed different extent of morphological and genetic differentiation within the different sites. Overall, genetic differentiation was weak but significant and was on average three times higher between sites (mean FST = 0.016) than between ecotypes within sites (mean FST = 0.005) indicating higher level of gene flow or a more recent shared ancestor between ecotypes within each site than between populations of the same ecotype. Evidence of divergent selection was also found between ecotypes and/or in association with morphological variation. Outlier loci found in genes related to lipid metabolism and visual acuity were of particular interest in this context of ecotypic divergence. However, we did not find clear indication of parallelism at the genomic level, despite the presence of phenotypic parallelism among some ecotypes from different sampling sites. Overall, the occurrence of different levels of both genomic and phenotypic differentiation between ecotypes within each site with several differentiated loci linked to relevant biological functions supports the presence of a continuum of divergence in lake trout.  相似文献   

11.
The pattern and intensity of pigmentation have direct impact on individual fitness through various ecological factors. In a Drosophila melanogaster population from southern Japan, thoracic trident pigmentation intensity of most of the strains could be classified into Dark or Light‐type. The expression level variation of the ebony gene correlated well with this phenotype and the allelic differences in expression indicated that the variation is partly due to cis‐regulatory changes. In the ~13 kb gene region, we identified 17 nucleotide sites and 2 indels that were in complete association with the thoracic trident pigmentation intensity. Interestingly, 11 out of 19 sites located within ~0.5 kb of the core epidermis enhancer. These sites had no obvious association with the abdominal pigmentation intensity in the previously analysed African populations from Uganda and Kenya, which suggested that multiple potential mutational pathways in the cis‐regulatory control region of a single gene could lead to similar phenotypic variation within this species. We also found that the Light‐type enhancer haplotype is strongly linked to a cosmopolitan inversion, In(3R)Payne, which is predominant in warmer climatic regions in both hemispheres. The sequence pattern suggested that the strong linkage may be due to selective forces related to thermal adaptation. The inferred selection for lighter pigmentation in the Japanese population is in the opposite direction of the previously reported case of selection for darker individuals in African populations. Nevertheless, both adaptive changes involved cis‐regulatory changes of ebony, which shows that this gene is likely to be a common target of natural selection.  相似文献   

12.
The effects of selection on variability at linked sites have an important influence on levels and patterns of within-population variation across the genome. Most theoretical models of these effects have assumed that selection is sufficiently strong that allele frequency changes at the loci concerned are largely deterministic. These models have led to the conclusion that directional selection for selectively favorable mutations, or against recurrent deleterious mutations, reduces nucleotide site diversity at linked neutral sites. Recent work has shown, however, that fixations of weakly selected mutations, accompanied by significant stochastic changes in allele frequencies, can sometimes cause higher diversity at linked sites when compared with the effects of fixations of neutral mutations. This study extends this work by deriving approximate expressions for the mean conditional times to fixation and loss of mutations subject to selection, and analyzing the conditions under which selection increases rather than reduces these times. Simulations are used to examine the relations between diversity at a neutral site and the fixation and loss times of mutations at a linked site that is subject to selection. It is shown that the long-term level of neutral diversity can be increased over the purely neutral value by recurrent fixations and losses of linked, weakly selected dominant or partially dominant favorable mutations, or linked recessive or partially recessive deleterious mutations. The results are used to examine the conditions under which associative overdominance, as opposed to background selection, is likely to operate.  相似文献   

13.
DNA sequence diversity in genes in the partially sex‐linked pseudoautosomal region (PAR) of the sex chromosomes of the plant Silene latifolia is higher than expected from within‐species diversity of other genes. This could be the footprint of sexually antagonistic (SA) alleles that are maintained by balancing selection in a PAR gene (or genes) and affect polymorphism in linked genome regions. SA selection is predicted to occur during sex chromosome evolution, but it is important to test whether the unexpectedly high sequence polymorphism could be explained without it, purely by the combined effects of partial linkage with the sex‐determining region and the population's demographic history, including possible introgression from Silene dioica. To test this, we applied approximate Bayesian computation‐based model choice to autosomal sequence diversity data, to find the most plausible scenario for the recent history of S. latifolia and then to estimate the posterior density of the most relevant parameters. We then used these densities to simulate variation to be expected at PAR genes. We conclude that an excess of variants at high frequencies at PAR genes should arise in S. latifolia populations only for genes with strong associations with fully sex‐linked genes, which requires closer linkage with the fully sex‐linked region than that estimated for the PAR genes where apparent deviations from neutrality were observed. These results support the need to invoke selection to explain the S. latifolia PAR gene diversity, and encourage further work to test the possibility of balancing selection due to sexual antagonism.  相似文献   

14.
A population decline of the western Atlantic red knot (Calidris canutus rufa) has been linked to food limitation during the spring migratory stopover in Delaware Bay, USA. The stopover ecology at potential alternative sites has received little attention. We studied factors affecting red knot habitat selection and flock size at a coastal stopover site in Virginia in 2006–2007. The most common potential prey items were coquina clams (Donax variabilis) and crustaceans. Red knot foraging sites had more clams and crustaceans than unused sites in 2006. Prey abundance increased during the 2007 stopover period and remained high after the red knot peak. Red knot flock size in 2007 increased with mean clam shell length, and probability of flock presence decreased with increasing distance from night use locations. Our results suggest that red knots preferred coquina clams and that these clams were not depleted during the stopover period in 2007. Thus prey abundance did not appear to be a population-limiting factor at this coastal stopover site in Virginia in that year. Protection of coastal sites outside of Delaware Bay, many of which have been altered by human development, would likely benefit red knot population recovery, as they can apparently provide abundant food resources during at least some years.  相似文献   

15.
The fixation of weakly selected mutations can be greatly influenced by strong directional selection at linked loci. Here, I investigate a two-locus model in which weakly selected, reversible mutations occur at one locus and recurrent strong directional selection occurs at the other locus. This model is analogous to selection on codon usage at synonymous sites linked to nonsynonymous sites under strong directional selection. Two approximations obtained here describe the expected frequency of the weakly selected preferred alleles at equilibrium. These approximations, as well as simulation results, show that the level of codon bias declines with an increasing rate of substitution at the strongly selected locus, as expected from the well-understood theory that selection at one locus reduces the efficacy of selection at linked loci. These solutions are used to examine whether the negative correlation between codon bias and nonsynonymous substitution rates recently observed in Drosophila can be explained by this hitchhiking effect. It is shown that this observation can be reasonably well accounted for if a large fraction of the nonsynonymous substitutions on genes in the data set are driven by strong directional selection.  相似文献   

16.
Allozyme variation at the phosphoglucose isomerase (PGI) locus in the Glanville fritillary butterfly (Melitaea cinxia) is associated with variation in flight metabolic rate, dispersal rate, fecundity and local population growth rate. To map allozyme to DNA variation and to survey putative functional variation in genomic DNA, we cloned the coding sequence of Pgi and identified nonsynonymous variable sites that determine the most common allozyme alleles. We show that these single‐nucleotide polymorphisms (SNPs) exhibit significant excess of heterozygotes in field‐collected population samples as well as in laboratory crosses. This is in contrast to previous results for the same species in which other allozymes and SNPs were in Hardy–Weinberg equilibrium or exhibited an excess of homozygotes. Our results suggest that viability selection favours Pgi heterozygotes. Although this is consistent with direct overdominance at Pgi, we cannot exclude the possibility that heterozygote advantage is caused by the presence of one or more deleterious alleles at linked loci.  相似文献   

17.
Charlesworth B 《Genetics》2012,190(1):5-22
The process of evolution at a given site in the genome can be influenced by the action of selection at other sites, especially when these are closely linked to it. Such selection reduces the effective population size experienced by the site in question (the Hill-Robertson effect), reducing the level of variability and the efficacy of selection. In particular, deleterious variants are continually being produced by mutation and then eliminated by selection at sites throughout the genome. The resulting reduction in variability at linked neutral or nearly neutral sites can be predicted from the theory of background selection, which assumes that deleterious mutations have such large effects that their behavior in the population is effectively deterministic. More weakly selected mutations can accumulate by Muller's ratchet after a shutdown of recombination, as in an evolving Y chromosome. Many functionally significant sites are probably so weakly selected that Hill-Robertson interference undermines the effective strength of selection upon them, when recombination is rare or absent. This leads to large departures from deterministic equilibrium and smaller effects on linked neutral sites than under background selection or Muller's ratchet. Evidence is discussed that is consistent with the action of these processes in shaping genome-wide patterns of variation and evolution.  相似文献   

18.
Much effort and interest have focused on assessing the importance of natural selection, particularly positive natural selection, in shaping the human genome. Although scans for positive selection have identified candidate loci that may be associated with positive selection in humans, such scans do not indicate whether adaptation is frequent in general in humans. Studies based on the reasoning of the MacDonald–Kreitman test, which, in principle, can be used to evaluate the extent of positive selection, suggested that adaptation is detectable in the human genome but that it is less common than in Drosophila or Escherichia coli. Both positive and purifying natural selection at functional sites should affect levels and patterns of polymorphism at linked nonfunctional sites. Here, we search for these effects by analyzing patterns of neutral polymorphism in humans in relation to the rates of recombination, functional density, and functional divergence with chimpanzees. We find that the levels of neutral polymorphism are lower in the regions of lower recombination and in the regions of higher functional density or divergence. These correlations persist after controlling for the variation in GC content, density of simple repeats, selective constraint, mutation rate, and depth of sequencing coverage. We argue that these results are most plausibly explained by the effects of natural selection at functional sites—either recurrent selective sweeps or background selection—on the levels of linked neutral polymorphism. Natural selection at both coding and regulatory sites appears to affect linked neutral polymorphism, reducing neutral polymorphism by 6% genome-wide and by 11% in the gene-rich half of the human genome. These findings suggest that the effects of natural selection at linked sites cannot be ignored in the study of neutral human polymorphism.  相似文献   

19.
Literature on seed dispersal mutualisms suggests that plant populations should hardly adapt to their current dispersers. We address the predictions that selection pressures exerted by ants on dispersal-related diaspore traits of the ant-dispersed Helleborus foetidus are highly variable in space, and that geographic (inter-population) variation in these traits is unrelated to selection by current dispersers. To test these predictions we use the concept of the quantitative adaptive landscape for seed size at dispersal. Such landscape depicts the relationship between the population’s mean trait value (mean seed size in the present study) and the population’s mean fitness (mean dispersal probability in the present study). Adaptive landscapes make it possible to assess whether the mean population’s phenotype agrees with one favored by selection. We first analyse, in 12 populations of H. foetidus from southern Spain, the extent of divergence among populations in seed and elaiosome size, and the abundance, composition, and behavior of the ant communities. Seeds from a fixed set of five of these populations were offered to ants in all the study sites to fit the adaptive landscape for seed size. In addition, seeds from the local population were also offered in each site. Our results show that seed size has undergone a larger divergence among populations than elaiosome size. Despite geographic variation in ant assemblages, the adaptive landscapes for seed size at dispersal were remarkably similar among sites: ants create disruptive selection on seed size in 10 out of 12 study sites. As predicted, the basic features of these adaptive landscapes (curvature and location of the minimum) varied geographically in accordance with variation in the size of seed dispersers. Also as predicted, in most populations, the observed mean seed size does not agree with that expected from the adaptive landscapes at dispersal. However, the relevance of dispersers for seed size evolution should not be neglected since the agreement between observed and optimum seed size was stronger where dispersers were more abundant. Thus, against the general view, our results evidence that, in H. foetidus, the observed geographic variation in dispersal-related plant traits is partly linked to selection exerted by current dispersers. Geographic variation in ant assemblages determines both the existence of a selection mosaic and the degree of adjustment of populations to the patterns of selection in the mosaic.  相似文献   

20.
The effect of multi-allelic balancing selection on nucleotide diversity at linked neutral sites was investigated by simulations of subdivided populations. The motivation is to understand the behaviour of self-recognition systems such as the MHC and plant self-incompatibility. For neutral sites, two types of subdivision are present: (1) into demes (connected by migration), and (2) into classes defined by different functional alleles at the selected locus (connected by recombination). Previous theoretical studies of each type of subdivision separately have shown that each increases diversity, and decreases the relative frequencies of low-frequency variants, at neutral sites or loci. We show here that the two types of subdivision act non-additively when sampling is at the whole population level, and that subdivision produces some non-intuitive results. For instance, in highly subdivided populations, genetic diversity at neutral sites may decrease with tighter linkage to a selected locus or site. Another conclusion is that, if there is population subdivision, balancing selection leads to decreased expected FST values for neutral sites linked to the selected locus. Finally, we show that the ability to detect balancing selection by its effects on linked variation, using tests such as Tajima's D, is reduced when genes in a subdivided population are sampled from the total population, rather than within demes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号