首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
During Drosophila embryogenesis, establishment of ventral and lateral cell fates requires spatial regulation of an extracellular serine protease cascade composed of Nudel, Gastrulation Defective (GD), Snake, and Easter. Pipe, a sulfotransferase expressed ventrally during oogenesis, sulfates secreted targets that somehow confer positive spatial input to this cascade. Nudel and GD activation are pipe-independent, while Easter activation requires pipe. The effect of pipe on Snake activation has been unknown. Here we show that Snake activation is cascade-dependent but pipe-independent. These findings support a conclusion that Snake’s activation of Easter is the first spatially regulated step in the dorsoventral protease cascade.  相似文献   

2.
Proper regulation of the Wingless/Wnt signaling pathway is essential for normal development. The scaffolding protein Axin plays a key role in this process through interactions with Drosophila Shaggy and Armadillo. In the current studies, we used a yeast two-hybrid assay to identify ten amino acids in Axin that are critical for in vitro interaction with Shaggy and two for interaction with Armadillo. We then generated five Axin variants in which individual putative contact amino acids were mutated and compared their activity, as assayed by rescue of axin null mutant flies, to that of Axin lacking the entire Shaggy (AxinΔSgg) or Armadillo (AxinΔArm) binding domain. Although we expected these mutants to function identically to Axin in which the entire binding domain was deleted, we instead observed a spectrum of phenotypic rescue. Specifically, two point mutants within the Shaggy binding domain showed loss of activity similar to that of AxinΔSgg and dominantly interfered with complex function, whereas a third mutant allele, AxinK446E, retained most function. Two Axin point mutants within the Armadillo binding domain were weak alleles and retained most function. These findings demonstrate the importance of in vivo verification of the role of specific amino acids within a protein.  相似文献   

3.
Clip domain serine proteases and their homologs are involved in invertebrate innate immunity, including hemolymph coagulation, antimicrobial peptide synthesis, cell adhesion, and melanization. Recognition of pathogens by pattern recognition receptors can trigger activation of a serine protease cascade. We report here the cDNA cloning of a serine protease (FcSP) and a serine protease homolog (FcSPH) from Chinese white shrimp, Fenneropenaeus chinensis. Both FcSP and FcSPH possess a clip domain at the N-terminal and an SP or SP-like domain at the C-terminal. In contrast to FcSP, FcSPH lacks a catalytic residue and is catalytically inactive. Tissue distribution and time course qRT-PCR analysis indicates that FcSP and FcSPH can respond to Vibrio anguillarum challenge in hemocytes, hepatopancreas and intestine. In situ hybridization analysis shows that FcSP is distributed in hemocytes and gills, and originated mainly from the hemocytes. FcSPH protein is expressed in gills and stomach of non-challenged shrimp. Its expression in gill mainly originates from the hemocytes in it. Two immunoreactive bands of FcSP can be detected in gills and stomach of non-challenged shrimp. FcSP protein is partially cleaved in non-challenged shrimp, while FcSPH protein is unprocessed in unchallenged shrimp and is partially cleaved after V. anguillarum challenge. Our results suggest that this Clip domain serine protease and its homolog may be involved in the serine protease cascade and play an important role in innate immunity of the shrimp.  相似文献   

4.
Grass is a clip domain serine protease (SP) involved in a proteolytic cascade triggering the Toll pathway activation of Drosophila during an immune response. Epistasic studies position it downstream of the apical protease ModSP and upstream of the terminal protease Spaetzle-processing enzyme. Here, we report the crystal structure of Grass zymogen. We found that Grass displays a rather deep active site cleft comparable with that of proteases of coagulation and complement cascades. A key distinctive feature is the presence of an additional loop (75-loop) in the proximity of the activation site localized on a protruding loop. All biochemical attempts to hydrolyze the activation site of Grass failed, strongly suggesting restricted access to this region. The 75-loop is thus proposed to constitute an original mechanism to prevent spontaneous activation. A comparison of Grass with clip serine proteases of known function involved in analogous proteolytic cascades allowed us to define two groups, according to the presence of the 75-loop and the conformation of the clip domain. One group (devoid of the 75-loop) contains penultimate proteases whereas the other contains terminal proteases. Using this classification, Grass appears to be a terminal protease. This result is evaluated according to the genetic data documenting Grass function.  相似文献   

5.
6.
The gastrulation defective (gd) locus encodes a novel serine protease that is involved in specifying the dorsal-ventral axis during embryonic development. Mutant alleles of gd have been classified into three complementation groups, two of which exhibit strong interallelic (intragenic) complementation. To understand the molecular basis of this interallelic complementation, we examined the complementation behavior of additional mutant alleles and sequenced alleles in all complementation groups. The data suggest that there are two discrete functional domains of Gd. A two-domain model of Gd suggesting that it is structurally similar to mammalian complement factors C2 and B has been previously proposed. To test this model we performed SP6 RNA microinjection to assay for activities associated with various domains of Gd. The microinjection data are consistent with the complement factor C2/B-like model. Site-directed mutagenesis suggests that Gd functions as a serine protease. An allele-specific interaction between an autoactivating form of Snake (Snk) and a gd allele altered in the protease domain suggests that Gd directly activates Snk in a protease activation cascade. We propose a model in which Gd is expressed during late oogenesis and bound within the perivitelline space but only becomes catalytically active during embryogenesis.  相似文献   

7.
Chlamydia trachomatis is a bacterial pathogen responsible for one of the most prevalent sexually transmitted infections worldwide. Its unique development cycle has limited our understanding of its pathogenic mechanisms. However, CtHtrA has recently been identified as a potential C. trachomatis virulence factor. CtHtrA is a tightly regulated quality control protein with a monomeric structural unit comprised of a chymotrypsin-like protease domain and two PDZ domains. Activation of proteolytic activity relies on the C-terminus of the substrate allosterically binding to the PDZ1 domain, which triggers subsequent conformational change and oligomerization of the protein into 24-mers enabling proteolysis. This activation is mediated by a cascade of precise structural arrangements, but the specific CtHtrA residues and structural elements required to facilitate activation are unknown. Using in vitro analysis guided by homology modeling, we show that the mutation of residues Arg362 and Arg224, predicted to disrupt the interaction between the CtHtrA PDZ1 domain and loop L3, and between loop L3 and loop LD, respectively, are critical for the activation of proteolytic activity. We also demonstrate that mutation to residues Arg299 and Lys160, predicted to disrupt PDZ1 domain interactions with protease loop LC and strand β5, are also able to influence proteolysis, implying their involvement in the CtHtrA mechanism of activation. This is the first investigation of protease loop LC and strand β5 with respect to their potential interactions with the PDZ1 domain. Given their high level of conservation in bacterial HtrA, these structural elements may be equally significant in the activation mechanism of DegP and other HtrA family members.  相似文献   

8.
Three serine protease zymogens, Gastrulation defective (GD), Snake (Snk) and Easter (Ea), and a nerve growth factor-like growth factor ligand precursor, Spaetzle, are required for specification of dorsal- ventral cell fate during Drosophila embryogenesis. The proteases have been proposed to function in a sequential activation cascade within the extracellular compartment called the perivitelline space. We examined biochemical interactions between these four proteins using a heterologous co-expression system. The results indicate that the three proteases do function in a sequential activation cascade, that GD becomes active and initiates the cascade and that interaction between GD and Snk is sufficient for GD to cleave itself autoproteolytically. The proteolytically active form of Ea cleaves GD at a different position, revealing biochemical feedback in the pathway. Both GD and Snk bind to heparin-Sepharose, providing a link between the pipe-defined ventral prepattern and the protease cascade. Our results suggest a model of the cascade in which initiation is by relief from inhibition, and spatial regulation of activity is due to interaction with sulfated proteoglycans.  相似文献   

9.
10.
Förster resonance energy transfer (FRET) technology has been widely used in biological and biomedical research, and it is a very powerful tool for elucidating protein interactions in either dynamic or steady state. SUMOylation (the process of SUMO [small ubiquitin-like modifier] conjugation to substrates) is an important posttranslational protein modification with critical roles in multiple biological processes. Conjugating SUMO to substrates requires an enzymatic cascade. Sentrin/SUMO-specific proteases (SENPs) act as an endopeptidase to process the pre-SUMO or as an isopeptidase to deconjugate SUMO from its substrate. To fully understand the roles of SENPs in the SUMOylation cycle, it is critical to understand their kinetics. Here, we report a novel development of a quantitative FRET-based protease assay for SENP1 kinetic parameter determination. The assay is based on the quantitative analysis of the FRET signal from the total fluorescent signal at acceptor emission wavelength, which consists of three components: donor (CyPet–SUMO1) emission, acceptor (YPet) emission, and FRET signal during the digestion process. Subsequently, we developed novel theoretical and experimental procedures to determine the kinetic parameters, kcat, KM, and catalytic efficiency (kcat/KM) of catalytic domain SENP1 toward pre-SUMO1. Importantly, the general principles of this quantitative FRET-based protease kinetic determination can be applied to other proteases.  相似文献   

11.
Phenoloxidases (POs) are required for the pea aphid's defense against bacterial and fungal infection. Prophenoloxidases (PPOs) are proteolytically converted to its active form PO through a clip domain serine protease cascade. In this study, we identified five clip domain serine proteases in the pea aphids. The messenger RNA levels of two of them, Ap_SPLP and Ap_VP, were upregulated by Gram‐positive bacterium Staphylococcus aureus and fungus Beauveria bassiana infections. Double‐stranded RNA‐based expression knockdown of these two genes resulted in reduced PO activity of the aphid hemolymph, higher loads of S. aureus and B. bassiana in the aphids, and lower survival rates of the aphids after infections. Our data suggest that Ap_SPLP and Ap_VP are involved in PPO activation pathway in the pea aphid.  相似文献   

12.
Serpins are protease inhibitors that play essential roles in the down-regulation of extracellular proteolytic cascades. The core serpin domain is highly conserved, and typical serpins are encoded with a molecular size of 35–50 kDa. Here, we describe a novel 93-kDa protein that contains two complete, tandemly arrayed serpin domains. This twin serpin, SPN93, was isolated from the larval hemolymph of the large beetle Tenebrio molitor. The N-terminal serpin domain of SPN93 forms a covalent complex with the Spätzle-processing enzyme, a terminal serine protease of the Toll signaling cascade, whereas the C-terminal serpin domain of SPN93 forms complexes with a modular serine protease and the Spätzle-processing enzyme-activating enzyme, which are two different enzymes of the cascade. Consequently, SPN93 inhibited β-1,3-glucan-mediated Toll proteolytic cascade activation in an in vitro system. Site-specific proteolysis of SPN93 at the N-terminal serpin domain was observed after activation of the Toll proteolytic cascade in vivo, and down-regulation of SPN93 by RNAi sensitized β-1,3-glucan-mediated larval death. Therefore, SPN93 is the first serpin that contains twin tandemly arrayed and functionally active serpin domains that have a regulatory role in the larval Toll proteolytic signaling cascade.  相似文献   

13.
14.
Autotransporters represent a large superfamily of known and putative virulence factors produced by Gram-negative bacteria. They consist of an N-terminal “passenger domain” responsible for the specific effector functions of the molecule and a C-terminal “β-domain” responsible for translocation of the passenger across the bacterial outer membrane. Here, we present the 2.5-Å crystal structure of the passenger domain of the extracellular serine protease EspP, produced by the pathogen Escherichia coli O157:H7 and a member of the serine protease autotransporters of Enterobacteriaceae (SPATEs). Like the previously structurally characterized SPATE passenger domains, the EspP passenger domain contains an extended right-handed parallel β-helix preceded by an N-terminal globular domain housing the catalytic function of the protease. Of note, however, is the absence of a second globular domain protruding from this β-helix. We describe the structure of the EspP passenger domain in the context of previous results and provide an alternative hypothesis for the function of the β-helix within SPATEs.  相似文献   

15.
16.
Mycobacteria use specialized type VII (ESX) secretion systems to export proteins across their complex cell walls. Mycobacterium tuberculosis encodes five nonredundant ESX secretion systems, with ESX-1 being particularly important to disease progression. All ESX loci encode extracellular membrane-bound proteases called mycosins (MycP) that are essential to secretion and have been shown to be involved in processing of type VII-exported proteins. Here, we report the first x-ray crystallographic structure of MycP1(24–407) to 1.86 Å, defining a subtilisin-like fold with a unique N-terminal extension previously proposed to function as a propeptide for regulation of enzyme activity. The structure reveals that this N-terminal extension shows no structural similarity to previously characterized protease propeptides and instead wraps intimately around the catalytic domain where, tethered by a disulfide bond, it forms additional interactions with a unique extended loop that protrudes from the catalytic core. We also show MycP1 cleaves the ESX-1 secreted protein EspB from both M. tuberculosis and Mycobacterium smegmatis at a homologous cut site in vitro.  相似文献   

17.
Factor B is a serine-protease zymogen in the horseshoe crab coagulation cascade, and it is the primary substrate for activated factor C, the LPS-responsive initiator of the cascade. Factor C is autocatalytically activated to α-factor C on LPS and is artificially converted to β-factor C, another activated form, by chymotrypsin. It is not known, however, whether LPS is required for the activation of factor B. Here we found that wild-type factor B expressed in HEK293S cells is activated by α-factor C, but not by β-factor C, in an LPS-dependent manner and that β-factor C loses the LPS binding activity of factor C through additional cleavage by chymotrypsin within the N-terminal LPS-binding region. Surface plasmon resonance and quartz crystal microbalance analyses revealed that wild-type factor B binds to LPS with high affinity comparable with that of factor C, demonstrating that factor B is the second LPS-binding zymogen in the cascade. An LPS-binding site of wild-type factor B was found in the N-terminal clip domain, and the activation rate of a clip domain deletion mutant was considerably slower than that of wild-type factor B. Moreover, in the presence of LPS, Triton X-100 inhibited the activation of wild-type factor B by α-factor C. We conclude that the clip domain of factor B has an important role in localizing factor B to the surface of Gram-negative bacteria or LPS released from bacteria to initiate effective proteolytic activation by α-factor C.  相似文献   

18.
Piao S  Song YL  Kim JH  Park SY  Park JW  Lee BL  Oh BH  Ha NC 《The EMBO journal》2005,24(24):4404-4414
Clip-domain serine proteases (SPs) are the essential components of extracellular signaling cascades in various biological processes, especially in embryonic development and the innate immune responses of invertebrates. They consist of a chymotrypsin-like SP domain and one or two clip domains at the N-terminus. Prophenoloxidase-activating factor (PPAF)-II, which belongs to the noncatalytic clip-domain SP family, is indispensable for the generation of the active phenoloxidase leading to melanization, a major defense mechanism of insects. Here, the crystal structure of PPAF-II reveals that the clip domain adopts a novel fold containing a central cleft, which is distinct from the structures of defensins with a similar arrangement of cysteine residues. Ensuing studies demonstrated that PPAF-II forms a homo-oligomer upon cleavage by the upstream protease and that the clip domain of PPAF-II functions as a module for binding phenoloxidase through the central cleft, while the clip domain of a catalytically active easter-type SP plays an essential role in the rapid activation of its protease domain.  相似文献   

19.
To cultivate the use of trans-splicing as a novel means to rapidly express various antibody fusion proteins, we tried to express antibody-reporter enzyme fusions in a COS-1 co-transfection model. When a vector designed to induce trans-splicing with IgH pre-mRNA was co-transfected with a vector encoding the mouse IgM locus, the expression of VH-secreted human placental alkaline phosphatase (SEAP) as well as Fab-SEAP were successfully expressed both in mRNA and protein levels. Especially, the vectors encoding complementary sequence to Sμ as a binding domain was accurate and efficient, producing trans-spliced mRNA of up to 2% of cis-spliced one. Since Sμ sequence should exist in every IgH pre-mRNA, our finding will lead to the rapid production and analysis of various antibody-enzyme fusions suitable for enzyme-linked immunosorbent assay (ELISA) or antibody-dependent enzyme prodrug therapy (ADEPT).  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号