首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
The sesquiterpene α-bisabolol (α-BSB) has been shown to be an effective cytotoxic agent for a variety of human cancer cells in culture and animal models. However, much of its intracellular action remains elusive. We evaluated the cytotoxic action of α-BSB against CML-T1, Jurkat and HeLa cell lines, as preclinical models for myeloid, lymphoid and epithelial neoplasias. The approach included single cell analysis (flow cytometry, immunocytology) combined with cytotoxicity and proliferation assays to characterize organelle damage, autophagy, cytostatic effect, and apoptosis. The study focuses on the relevant steps in the cytotoxic cascade triggered by α-BSB: (1) the lipid rafts through which α-BSB enters the cells, (2) the opening of pores in the mitochondria and lysosomes, (3) the activation of both caspase-dependent and caspase-independent cell death pathways, (4) the induction of autophagy and (5) apoptosis. The effectiveness of α-BSB as an agent against tumor cells is grounded on its capability to act on different layers of cell regulation to elicit different concurrent death signals, thereby neutralizing a variety of aberrant survival mechanisms leading to treatment resistance in neoplastic cell.  相似文献   

2.
Shedding of extracellular membranes from the cell surface may be one of the means through which cells communicate with one another. In an attempt to elucidate whether cell surface exfoliation is a directed or random process, we investigated the membrane lipid and protein composition and membrane lipid order of shed extracellular membranes and of plasma membranes from which they arose in normal circulating lymphocytes and in the B-lymphoblastoid cell lines Raji, WI HF2 729 and the T-lymphoblastoid cell line Jurkat. Extracellular membranes derived from transformed cell lines were more rigid as assessed by steady state polarization of 1,6-diphenylhexatriene (DPH) and were highly enriched in cholesterol when compared with the corresponding plasma membrane. The extracellular membranes from normal lymphocytes, on the other hand, were more fluid and contained more polyunsaturated acyl chains than did the plasma membranes from these cells. Our results suggest that extracellular membranes are shed from specialized regions of the lymphocyte plasma membrane and that membrane exfoliation is likely to be a directed event.  相似文献   

3.
Pike LJ  Han X  Chung KN  Gross RW 《Biochemistry》2002,41(6):2075-2088
Lipid rafts are specialized cholesterol-enriched membrane domains that participate in cellular signaling processes. Caveolae are related domains that become invaginated due to the presence of the structural protein, caveolin-1. In this paper, we use electrospray ionization mass spectrometry (ESI/MS) to quantitatively compare the phospholipids present in plasma membranes and nondetergent lipid rafts from caveolin-1-expressing and nonexpressing cells. Lipid rafts are enriched in cholesterol and sphingomyelin as compared to the plasma membrane fraction. Expression of caveolin-1 increases the amount of cholesterol recovered in the lipid raft fraction but does not affect the relative proportions of the various phospholipid classes. Surprisingly, ESI/MS demonstrated that lipid rafts are enriched in plasmenylethanolamines, particularly those containing arachidonic acid. While the total content of anionic phospholipids was similar in plasma membranes and nondetergent lipid rafts, the latter were highly enriched in phosphatidylserine but relatively depleted in phosphatidylinositol. Detergent-resistant membranes made from the same cells showed a higher cholesterol content than nondetergent lipid rafts but were depleted in anionic phospholipids. In addition, these detergent-resistant membranes were not enriched in arachidonic acid-containing ethanolamine plasmalogens. These data provide insight into the structure of lipid rafts and identify potential new roles for these domains in signal transduction.  相似文献   

4.
Lipid rafts are small plasma membrane domains that contain high levels of cholesterol and sphingolipids. Traditional methods for the biochemical isolation of lipid rafts involve the extraction of cells with nonionic detergents followed by the separation of a low-density, detergent-resistant membrane fraction on density gradients. Because of concerns regarding the possible introduction of artifacts through the use of detergents, it is important to develop procedures for the isolation of lipid rafts that do not involve detergent extraction. We report here a simplified method for the purification of detergent-free lipid rafts that requires only one short density gradient centrifugation, but yields a membrane fraction that is highly enriched in cholesterol and protein markers of lipid rafts, with no contamination from nonraft plasma membrane or intracellular membranes.  相似文献   

5.
The preferential association of cholesterol and sphingolipids within plasma membranes forms organized compartments termed lipid rafts. Addition of caveolin proteins to this lipid milieu induces the formation of specialized invaginated plasma membrane structures called caveolae. Both lipid rafts and caveolae are purported to function in vesicular transport and cell signaling. We and others have shown that disassembly of rafts and caveolae through depletion of plasma membrane cholesterol mitigates mechanotransduction processes in endothelial cells. Because osteoblasts are subjected to fluid-mechanical forces, we hypothesize that cholesterol-rich plasma membrane microdomains also serve the mechanotransduction process in this cell type. Cultured human fetal osteoblasts were subjected to either sustained hydrostatic pressure or laminar shear stress using a pressure column or parallel-plate apparatus, respectively. We found that sustained hydrostatic pressure induced protein tyrosine phosphorylation, activation of extracellular signal-regulated kinase (ERK)1/2, and enhanced expression of c-fos in both time- and magnitude-dependent manners. Similar responses were observed in cells subjected to laminar shear stress. Both sustained hydrostatic pressure- and shear stress-induced signaling were significantly reduced in osteoblasts pre-exposed to either filipin or methyl--cyclodextrin. These mechanotransduction responses were restored on reconstitution of lipid rafts and caveolae, which suggests that cholesterol-rich plasma membrane microdomains participate in the mechanotransduction process in osteoblasts. In addition, mechanical force-induced phosphoproteins were localized within caveolin-containing membranes. These data support the concept that lipid rafts and caveolae serve a general function as cell surface mechanotransduction sites within the plasma membrane. lipid rafts; caveolae; extracellular signal-regulated kinase  相似文献   

6.
In the present study, the lipid raft composition of a canine mastocytoma cell line (C2) was analyzed. Lipid rafts were well separated from non-raft plasma membranes using a detergent-free isolation technique. To study the influence of n-3 and n-6 polyunsaturated fatty acids (PUFA) on raft fatty acid composition in comparison to non-raft cell membrane, C2 were supplemented with one of the following: α-linolenic acid, eicosapentaenoic acid, docosahexaenoic acid, linoleic acid or arachidonic acid. Enrichment of the culture medium with a specific PUFA resulted in an increase in the content of this fatty acid both in rafts and non-raft membranes. Contents of cholesterol and protein were found not to be affected by the changes in the fatty acid profiles. In conclusion, our data provide strong evidence that PUFA modulate lipid composition and physiological properties of membrane micro domains of mast cells which in turn may have effects on mast cell function.  相似文献   

7.
Metastasis is the major cause of morbidity and mortality in cancer. Recent studies reveal a role of chemotaxis in cancer cell metastasis. Epidermal growth factor receptors (EGFR) have potent chemotactic effects on human breast cancer cells. Lipid rafts, organized microdomain on plasma membranes, regulate the activation of many membrane receptors. In the current study, we investigated the role of lipid rafts in EGFR-mediated cancer cell chemotaxis. Our confocal microscopy results suggested that EGFR co-localized with GM1-positive rafts. Disrupting rafts with methyl-beta-cyclodextrin (mbetaCD) inhibited EGF-induced chemotaxis of human breast cancer cells. Supplementation with cholesterol reversed the inhibitory effects. Pretreatment with mbetaCD also impaired directional migration of cells in an in vitro "wound healing" assay, EGF-induced cell adhesion, actin polymerization, Akt phosphorylation and protein kinase Czeta (PKCzeta) translocation. Taken together, our study indicated that integrity of lipid rafts was critical in EGF-induced chemotaxis of human breast cancer cells.  相似文献   

8.
While investigating the mechanism of action of the novel antitumor drug Aplidin, we have discovered a potent and novel cell-killing mechanism that involves the formation of Fas/CD95-driven scaffolds in membrane raft clusters housing death receptors and apoptosis-related molecules. Fas, tumor necrosis factor-receptor 1, and tumor necrosis factor-related apoptosis-inducing ligand receptor 2/death receptor 5 were clustered into lipid rafts in leukemic Jurkat cells following Aplidin treatment, the presence of Fas being essential for apoptosis. Preformed membrane-bound Fas ligand (FasL) as well as downstream signaling molecules, including Fas-associated death domain-containing protein, procaspase-8, procaspase-10, c-Jun amino-terminal kinase, and Bid, were also translocated into lipid rafts, connecting death receptor extrinsic and mitochondrial intrinsic apoptotic pathways. Blocking Fas/FasL interaction partially inhibited Aplidin-induced apoptosis. Aplidin was rapidly incorporated into membrane rafts, and drug uptake was inhibited by lipid raft disruption. Actin-linking proteins ezrin, moesin, RhoA, and RhoGDI were conveyed into Fas-enriched rafts in drug-treated leukemic cells. Disruption of lipid rafts and interference with actin cytoskeleton prevented Fas clustering and apoptosis. Thus, Aplidin-induced apoptosis involves Fas activation in both a FasL-independent way and, following Fas/FasL interaction, an autocrine way through the concentration of Fas, membrane-bound FasL, and signaling molecules in membrane rafts. These data indicate a major role of actin cytoskeleton in the formation of Fas caps and highlight the crucial role of the clusters of apoptotic signaling molecule-enriched rafts in apoptosis, acting as concentrators of death receptors and downstream signaling molecules and as the linchpin from which a potent death signal is launched.  相似文献   

9.
Although reverse cholesterol transport from peripheral cell types is mediated through plasma membrane microdomains termed lipid rafts, almost nothing is known regarding the existence, protein/lipid composition, or structure of these putative domains in liver hepatocytes, cells responsible for the net removal of cholesterol from the body. Lipid rafts purified from hepatocyte plasma membranes by a nondetergent affinity chromatography method were: i) present at 33 +/- 3% of total plasma membrane protein; ii) enriched in key proteins of the reverse cholesterol pathway [scavenger receptor class B type I (SR-B1), ABCA1, P-glycoprotein (P-gp), sterol carrier protein-2 (SCP-2)]; iii) devoid of caveolin-1; iv) enriched in cholesterol, sphingomyelin, GM1, and phospholipids low in polyunsaturated fatty acid and double bond index; and v) exhibited an intermediate liquid-ordered lipid phase with significant transbilayer fluidity gradient. Ablation of the gene encoding SCP-2 significantly altered lipid rafts to: i) increase the proportion of lipid rafts present, thereby increasing raft total content of ABCA1, P-gp, and SR-B1; ii) increase total phospholipids while decreasing GM1 in lipid rafts; iii) decrease the fluidity of lipid rafts, consistent with the increased intermediate liquid-ordered phase; and iv) abolish the lipid raft transbilayer fluidity gradient. Thus, despite the absence of caveolin-1 in liver hepatocytes, lipid rafts represented nearly one-third of the mouse hepatocyte plasma membrane proteins and displayed unique protein, lipid, and biophysical properties that were differentially regulated by SCP-2 expression.  相似文献   

10.
Many signaling proteins are targeted to low density, sphingomyelin- and cholesterol-enriched membranes, also called lipid rafts. These domains organize receptor-mediated signaling events at the plasma membrane. Fatty acylation is one mechanism for targeting proteins to rafts. It was therefore of interest to determine if protein palmitoyltransferase activity is also present in these domains. In this study, protein palmitoyltransferase activity, assayed using G-protein alpha subunits as a substrate, was found to be highly enriched in low density membranes derived from cells that express caveolin as well as those that do not. Depletion of cellular cholesterol with the drug methyl-beta-cyclodextrin resulted in inhibition of palmitoyltransferase activity and a redistribution of the remaining activity to membranes of higher density. This effect was reversed by adding cholesterol to cyclodextrin-treated cells. When reconstituted into cell membranes, the population of purified recombinant G(alphai) that was palmitoylated was highly enriched in the low density membrane fractions, whereas the bulk unmodified G(alphai)-protein was largely excluded. This effect required palmitoyltransferase activity and was abolished if the palmitoylated cysteine was mutated. Thus, palmitoyltransferase facilitates the enrichment of fatty acylated signaling molecules in plasma membrane subdomains.  相似文献   

11.
Metastasis is the major cause of morbidity and mortality in cancer. Recent studies reveal a role of chemotaxis in cancer cell metastasis. Epidermal growth factor receptors (EGFR) have potent chemotactic effects on human breast cancer cells. Lipid rafts, organized microdomain on plasma membranes, regulate the activation of many membrane receptors. In the current study, we investigated the role of lipid rafts in EGFR-mediated cancer cell chemotaxis. Our confocal microscopy results suggested that EGFR co-localized with GM1-positive rafts. Disrupting rafts with methyl-β-cyclodextrin (mβCD) inhibited EGF-induced chemotaxis of human breast cancer cells. Supplementation with cholesterol reversed the inhibitory effects. Pretreatment with mβCD also impaired directional migration of cells in an in vitro “wound healing” assay, EGF-induced cell adhesion, actin polymerization, Akt phosphorylation and protein kinase Cζ (PKCζ) translocation. Taken together, our study indicated that integrity of lipid rafts was critical in EGF-induced chemotaxis of human breast cancer cells.  相似文献   

12.
This work deals with an analysis of the role of cholesterol-rich lipid microdomains (rafts) in cellular mechanisms of natural immunity and antitumor defense. The lytic action of natural killer (NK) cells was studied depending on the cholesterol content and the state of lipid rafts in the plasma membrane of transformed cells. In this work, the targets were human leukemia K562 cells. For the partial extraction of cholesterol, methyl-beta-cyclodextrin (MbCD), cyclic oligosaccharide selectively binding sterols, was used. A decrease in the cholesterol level after the incubation of cells with MbCD was confirmed by the enzymatic method. Using the 3H-uridine test, the activity of NK (mouse splenocytes) towards the cultivated K562 cells was estimated under different conditions, including those after the cell incubation with MbCD or alpha-cyclodextrin (aCD), a structural MbCD analog that does not bind sterols. The results obtained indicate that a decrease in the cholesterol content in K562 cells (after treatment with MbCD at a concentration of 2.5 or 5 mM) leads to the complete loss of their sensitivity to the NK lytic action. Most likely, this is caused by a disturbance of the structure of the lipid rafts whose integrity critically depends on the membrane cholesterol level. These conclusions agree with the data on the visualization of the cellular surface changes obtained at the fluorescent labeling of the ganglioside GM1, a marker of the cholesterol-rich lipid microdomains.  相似文献   

13.
Although the functional significance of caveolae/lipid rafts in cellular signaling and cholesterol transfer is increasingly recognized, almost nothing is known regarding the lipids, cholesterol dynamics, and factors regulating these properties in caveolae/lipid rafts as opposed to nonlipid raft domains of the plasma membrane. The present findings demonstrate the utility of con-A affinity chromatography for simultaneous isolation of caveolae/lipid raft and nonlipid raft domains from plasma membranes of L-cell fibroblasts. These domains differed markedly in both protein and lipid constituents. Although caveolae/lipid rafts were enriched in total lipid, cholesterol, and phospholipid as well as other markers for these domains, the cholesterol/phospholipid ratio of caveolae/lipid rafts did not differ from that of nonlipid rafts. Nevertheless, spontaneous sterol transfer was 7-12-fold faster from caveolae/lipid raft than nonlipid raft domains of the plasma membrane. This was largely due to the near absence of exchangeable sterol in the nonlipid rafts. SCP-2 dramatically and selectively enhanced sterol transfer from caveolae/lipid rafts, but not from nonlipid rafts. Finally, overexpression of SCP-2 significantly altered the sterol dynamics of caveolae/lipid rafts to facilitate retention of cholesterol within the cell. These results established for the first time that (i) caveolae/lipid rafts, rather than the nonlipid raft domains, contain significant levels of rapidly transferable sterol, consistent with their role in spontaneous sterol transfer from and through the plasma membrane, and (ii) SCP-2 selectively regulates how caveolae/lipid rafts, but not nonlipid raft domains, mediate cholesterol trafficking through the plasma membrane.  相似文献   

14.
Prosaposin is a neurotrophic factor that has been demonstrated to mediate trophic signalling events in different cell types; it distributes to surface membranes of neural cells and also exists as a secreted protein in different body fluids. Prosaposin was demonstrated to form tightly bound complexes with a variety of gangliosides, and a functional role has been suggested for ganglioside-prosaposin complexes. In this work, we provide evidence that exogenous prosaposin triggers a signal cascade after binding to its target molecules on lipid rafts of pheochromocytoma PC12 cell plasma membranes, as revealed by scanning confocal microscopy and linear sucrose gradient analysis. In these cells, prosaposin is able to induce extracellular signal-regulated kinase phosphorylation, sphingosine kinase activation, and consequent cell death prevention, acting through lipid rafts. These findings point to the role of lipid rafts in the prosaposin-triggered signalling pathway, thus supporting a role for this factor as a new component of the multimolecular signalling complex involved in the neurotrophic response.  相似文献   

15.
Upregulated expression of eN has been found in the highly invasive human melanoma cell lines but neither in melanocytes nor in primary tumor cells. Membrane proteins associated with cell adhesion and metastasis: α5-, β1-, β3-integrins, and CD44 were elevated gradually in accordance with increasing metastatic potential. αv-integrin was seen mostly in aggressive melanomas. The expression of eN correlated with a number of metastasis-related markers and thus may have a function in the process. eN activity went parallel with its amount in all cells. Concanavalin A strongly inhibited the enzyme in a noncompetitive way. Clustering of eN protein in overexpressing cells by ConA-treatment increased the enzyme association with the heavy cytoskeletal complexes. A similar shift towards cytoskeletal fractions took also place with other membrane proteins coexpressed with eN. This ConA-induced association may reflect a putative interaction of eN with physiological ligand, that upon interaction, aggregates protein components of lipid rafts and triggers signaling pathway that may be intrinsically involved in cell-stroma adhesion.  相似文献   

16.
Lipid rafts are plasma membrane microdomains that are highly enriched in signaling molecules and that act as signal transduction platforms for many immune receptors. The involvement of these microdomains in HLA-DR-induced signaling is less well defined. We examined the constitutive presence of HLA-DR molecules in lipid rafts, their possible recruitment into these microdomains, and the role of these microdomains in HLA-DR-induced responses. We detected significant amounts of HLA-DR molecules in the lipid rafts of EBV(+) and EBV(-) B cell lines, monocytic cell lines, transfected HeLa cells, tonsillar B cells, and human monocytes. Localization of HLA-DR in these microdomains was unaffected by the deletion of the cytoplasmic domain of both the alpha and beta chains. Ligation of HLA-DR with a bivalent, but not a monovalent, ligand resulted in rapid tyrosine phosphorylation of many substrates, especially Lyn, and activation of ERK1/2 MAP kinase. However, the treatment failed to induce further recruitment of HLA-DR molecules into lipid rafts. The HLA-DR-induced signaling events were accompanied by the induction of cell-cell adhesion that could be inhibited by PTK and Lyn but not ERK1/2 inhibitors. Disruption of lipid rafts by methyl-beta-cyclodextrin (MbetaCD) resulted in the loss of membrane raft association with HLA-DR molecules, inhibition of HLA-DR-mediated protein tyrosine phosphorylation and cell-cell adhesion. MbetaCD did not affect the activation of ERK1/2, which was absent from lipid rafts. These results indicate that although all the HLA-DR-induced events studied are dependent on HLA-DR dimerization, some require the presence of HLA-DR molecules in lipid rafts, whereas others do not.  相似文献   

17.
The cellular isoform of the normal prion protein PrP(c), encoded by the PRNP gene, is expressed in human intestinal epithelial cells where it may represent a potential target for infectious prions. We have sequenced the PRNP gene in Caco-2 and HT-29 parental and clonal cell lines, and found that these cells have a distinct polymorphism at codon 129. HT-29 cells are homozygous Met/Met, whereas Caco-2 cells are heterozygous Met/Val. The 129Val variant was also detected in Caco-2 mRNAs. Real-time PCR quantifications revealed that PrP(c) mRNAs were more expressed in HT-29 cells than in Caco-2 cells. These data were confirmed by studying the expression of PrP(c) in plasma membranes and lipid rafts prepared from these cells. Overall, these results may be important in view of using human intestinal cell lines Caco-2 and HT-29 as cellular in vitro models to study the initial steps of prion propagation after oral inoculation.  相似文献   

18.
α-Bisabolol β-d-fucopyranoside, a cytotoxic naturally occurring compound, was efficiently synthesized along with five other α-bisabolol glycosides (β-d-glucoside, β-d-galactoside, α-d-mannoside, β-d-xyloside and α-l-rhamnoside). Glycosidation of α-bisabolol was performed using Schmidt’s inverse procedure and provided excellent yields (83-95%). Cytotoxicity was evaluated against a broad panel of cancerous cell lines including human and rat glioma (U-87, U-251 and GL-261) since the anticancer activity of α-bisabolol was previously demonstrated against brain tumor cell lines. The addition of a sugar moiety markedly increased α-bisabolol cytotoxicity in most cases. Among the synthesized glycosides, α-bisabolol α-l-rhamnopyranoside exhibited the strongest cytotoxic activity with IC50 ranging from 40 to 64 μM. According to ADME in silico predictions, this glycoside closely respects physicochemical parameters necessary to cross the blood-brain barrier passively.  相似文献   

19.
MRP1 (multidrug-resistance-related protein 1)/ABCC1 (ATP-binding cassette transporter C1) has been localized in cholesterol-enriched lipid rafts, which suggests a role for these lipid rafts and/or cholesterol in MRP1 function. In the present study, we have shown for the first time that nearly complete oxidation of free cholesterol in the plasma membrane of BHK-MRP1 (MRP1-expressing baby hamster kidney) cells did not affect MRP1 localization in lipid rafts or its efflux function, using 5-carboxyfluorescein diacetate as a substrate. Inhibition of cholesterol biosynthesis, using lovastatin in combination with RO 48-8071, an inhibitor of oxidosqualene cyclase, resulted in a shift of MRP1 out of lipid raft fractions, but did not affect MRP1-mediated efflux in Neuro-2a (neuroblastoma) cells. Short-term methyl-β-cyclodextrin treatment was equally effective in removing free cholesterol from Neuro-2a and BHK-MRP1 cells, but affected MRP1 function only in the latter. The kinetics of loss of both MRP1 efflux function and lipid raft association during long-term methyl-β-cyclodextrin treatment did not match the kinetics of free cholesterol removal in both cell lines. Moreover, MRP1 activity was measured in vesicles consisting of membranes isolated from BHK-MRP1 cells using the substrate cysteinyl leukotriene C4 and was not changed when the free cholesterol level of these membranes was either decreased or increased. In conclusion, MRP1 activity is not correlated with the level of free cholesterol or with localization in cholesterol-dependent lipid rafts.  相似文献   

20.
Denny PW  Field MC  Smith DF 《FEBS letters》2001,491(1-2):148-153
The plasma membranes of the divergent eukaryotic parasites, Leishmania and Trypanosoma, are highly specialised, with a thick coat of glycoconjugates and glycoproteins playing a central role in virulence. Unusually, the majority of these surface macro-molecules are attached to the plasma membrane via a glycosylphosphatidylinositol (GPI) anchor. In mammalian cells and yeast, many GPI-anchored molecules associate with sphingolipid and cholesterol-rich detergent-resistant membranes, known as lipid rafts. Here we show that GPI-anchored parasite macro-molecules (but not the dual acylated Leishmania surface protein (hydrophilic acylated surface protein) or a subset of the GPI-anchored glycoinositol phospholipid glycolipids) are enriched in a sphingolipid/sterol-rich fraction resistant to cold detergent extraction. This observation is consistent with the presence of functional lipid rafts in these ancient, highly polarised organisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号