首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Oxidative stress in mammalian cells is an inevitable consequence of their aerobic metabolism. Oxidants produce modifications to proteins leading to loss of function (or gain of undesirable function) and very often to an enhanced degradation of the oxidized proteins. For several years it has been known that the proteasome is involved in the degradation of oxidized proteins. This review summarizes our knowledge about the recognition of oxidized protein substrates by the proteasome in in vitro systems and its applicability to living cells. The majority of studies in the field agree that the degradation of mildly oxidized proteins is an important function of the proteasomal system. The major recognition motif of the substrates seems to be hydrophobic surface patches that are recognized by the 20S 'core' proteasome. Such hydrophobic surface patches are formed by partial unfolding and exposure of hydrophobic amino acid residues during oxidation. Oxidized proteins appear to be relatively poor substrates for ubiquitination, and the ubiquitination system does not seem to be involved in the recognition or targeting of oxidized proteins. Heavily oxidized proteins appear to first aggregate (new hydrophobic and ionic bonds) and then to form covalent cross-links that make them highly resistant to proteolysis. The inability to degrade extensively oxidized proteins may contribute to the accumulation of protein aggregates during diseases and the aging process.  相似文献   

2.
The formation of oxidized proteins is one of the highlights of oxidative stress. In order not to accumulate such proteins have to be degraded. The major proteolytic system responsible for the removal of oxidized proteins is the proteasome. The proteasome is distributed throughout the cytosolic and nuclear compartment of mammalian cells, with high concentrations in the nucleus. On the other hand a major part of protein oxidation is taking place in the cytosol. The present review highlights the current knowledge on the intracellular distribution of oxidized proteins and put it into contrast with the concentration and distribution of the proteasome.  相似文献   

3.
The proteasome is a multicatalytic protease that is responsible for the degradation of the majority of intracellular proteins. Its role is correlated with several major regulatory pathways that are involved in cell cycle control, signaling, and antigen presentation, as well as in the removal of oxidatively damaged proteins. Although several proteasomal catalytic inhibitors have been described, very few activators have been reported to date. Some reports in the literature highlight the cellular protective effects of proteasome activation against oxidative stress and its effect on increased life span. In this work, we describe a peptide named proteasome-activating peptide 1 (PAP1), which increases the chymotrypsin-like proteasomal catalytic activity and, consequently, proteolytic rates both in vitro and in culture. PAP1 proteasomal activation is mediated by the opening of the proteasomal catalytic chamber. We also demonstrate that the observed proteasomal activation protected cells from oxidative stress; further, PAP1 prevented protein aggregation in a cellular model of amyotrophic lateral sclerosis. The role of 20SPT gate opening underlying protection against oxidative stress was also explored in yeast cells. The present data indicate the importance of proteasomal activators as potential drugs for the treatment of pathologies associated with the impaired removal of damaged proteins, which is observed in many neurodegenerative diseases.  相似文献   

4.
Selective degradation of oxidized calmodulin by the 20 S proteasome   总被引:1,自引:0,他引:1  
We have investigated the mechanisms that target oxidized calmodulin for degradation by the proteasome. After methionine oxidation within calmodulin, rates of degradation by the 20 S proteasome are substantially enhanced. Mass spectrometry was used to identify the time course of the proteolytic fragments released from the proteasome. Oxidized calmodulin is initially degraded into large proteolytic fragments that are released from the proteasome and subsequently degraded into small peptides that vary in size from 6 to 12 amino acids. To investigate the molecular determinants that result in the selective degradation of oxidized calmodulin, we used circular dichroism and fluorescence spectroscopy to assess oxidant-induced structural changes. There is a linear correlation between decreases in secondary structure and the rate of degradation. Calcium binding or the repair of oxidized calmodulin by methionine sulfoxide reductase induces comparable changes in alpha-helical content and rates of degradation. In contrast, alterations in the surface hydrophobicity of oxidized calmodulin do not alter the rate of degradation by the proteasome, indicating that changes in surface hydrophobicity do not necessarily lead to enhanced proteolytic susceptibility. These results suggest that decreases in secondary structure expose proteolytically sensitive sites in oxidized calmodulin that are cleaved by the proteasome in a nonprocessive manner.  相似文献   

5.
The 20 S proteasome has been suggested to play a critical role in mediating the degradation of abnormal proteins under conditions of oxidative stress and has been found in tight association with the molecular chaperone Hsp90. To elucidate the role of Hsp90 in promoting the degradation of oxidized calmodulin (CaM(ox)), we have purified red blood cell 20 S proteasomes free of Hsp90 and assessed their ability to degrade CaM(ox) in the absence or presence of Hsp90. Purified 20 S proteasome does not degrade CaM(ox) unless Hsp90 is added. CaM(ox) degradation is sensitive to both proteasome and Hsp90-specific inhibitors and is further enhanced in the presence of 2 mm ATP. Irrespective of the presence of Hsp90, we find that unoxidized CaM is not significantly degraded. Direct binding measurements demonstrate that Hsp90 selectively associates with CaM(ox); essentially no binding is observed between Hsp90 and unoxidized CaM. These results indicate that Hsp90 in association with the 20 S proteasome can selectively associate with oxidized and partially unfolded CaM to promote degradation by the proteasome.  相似文献   

6.
Intracellular accumulation of denatured proteins impairs cellular function. The proteasome is recognized as an enzyme responsible for the effective clearance of those cytotoxic denatured proteins. As another enzyme that participates in the destruction of damaged proteins, we have identified oxidized protein hydrolase (OPH) and found that OPH confers cellular resistance to various kinds of oxidative stress. In this study, we demonstrate the roles of the proteasome and OPH in the clearance of denatured proteins. The inhibition of proteasome activity results in the elevation of protein carbonyls in cells under oxidative stress. On the other hand, cells overexpressing OPH retain higher resistance to oxidative stress, even though the proteasome activity is inhibited. Furthermore, upon inhibition of the proteasome activity, OPH is recruited to a novel organelle termed the aggresome where misfolded or denatured proteins are processed. Thus, OPH and the proteasome coordinately contribute to the clearance of cytotoxic denatured proteins.  相似文献   

7.
An Rpn9-disrupted yeast strain, Delta rpn9, whose growth is temperature sensitive with defective assembly of the 26 S proteasome complex, was studied. This mutant yeast was more resistant to hydrogen peroxide treatment and able to degrade carbonylated proteins more efficiently than wild type. Nondenaturing gel electrophoresis followed by activity staining revealed that Delta rpn9 yeast cells had a higher activity of 20 S proteasome than wild type and that in both Delta rpn9 and wild-type cells treated with hydrogen peroxide, 20 S proteasome activity was increased with a concomitant decrease in 26 S proteasome activity. Protein multiubiquitination was not observed in the hydrogen peroxide-treated cells. Taken together, these results suggest that the 20 S proteasome degrades oxidized proteins without ubiquitination of target proteins.  相似文献   

8.
In order to examine the possible involvement of the 20S proteasome in degradation of oxidized proteins, the effects of different cadmium concentrations on its activities, protein abundance and oxidation level were studied using maize (Zea mays L.) leaf segments. The accumulation of carbonylated and ubiquitinated proteins was also investigated. Treatment with 50 microM CdCl(2) increased both trypsin- and PGPH-like activities of the 20S proteasome. The incremental changes in 20S proteasome activities were probably caused by an increased level of 20S proteasome oxidation, with this being responsible for degradation of the oxidized proteins. When leaf segments were treated with 100 microM CdCl(2), the chymotrysin- and trypsin-like activities of the 20S proteasome also decreased, with a concomitant increase in accumulation of carbonylated and ubiquitinated proteins. With both Cd(2+) concentrations, the abundance of the 20S proteasome protein remained similar to the control experiments. These results provide evidence for the involvement of this proteolytic system in cadmium-stressed plants.  相似文献   

9.
Voss P  Grune T 《Amino acids》2007,32(4):527-534
Summary. The accumulation of oxidized proteins is known to be linked to some severe neurodegenerative diseases like Alzheimer’s, Parkinson’s and Huntington’s disease. Furthermore, the aging process is also accompanied by an ongoing aggregation of misfolded and damaged proteins. Therefore, mammalian cells have developed potent degradation systems, which selectively degrade damaged and misfolded proteins. The proteasomal system is largely responsible for the removal of oxidatively damaged proteins form the cellular environment. Not only cytosolic proteins are prone to oxidative stress, also nuclear proteins are readily oxidized. The nuclear proteasomal system is responsible for the degradation of these proteins. This review is focused on the specific degradation of oxidized nuclear proteins, the role of the proteasome in this process and the regulation of the nuclear proteasomal system under oxidative conditions.  相似文献   

10.
Tau is the major protein exhibiting intracellular accumulation in Alzheimer disease. The mechanisms leading to its accumulation are not fully understood. It has been proposed that the proteasome is responsible for degrading tau but, since proteasomal inhibitors block both the ubiquitin-dependent 26S proteasome and the ubiqutin-independent 20S proteasome pathways, it is not clear which of these pathways is involved in tau degradation. Some involvement of the ubiquitin ligase, CHIP in tau degradation has also been postulated during stress. In the current studies, we utilized HT22 cells and tau-transfected E36 cells in order to test the relative importance or possible requirement of the ubiquitin-dependent 26S proteasomal system versus the ubiquitin-independent 20S proteasome, in tau degradation. By means of ATP-depletion, ubiquitinylation-deficient E36ts20 cells, a 19S proteasomal regulator subunit MSS1-siRNA approaches, and in vitro ubiquitinylation studies, we were able to demonstrate that ubiquitinylation is not required for normal tau degradation.  相似文献   

11.
Checkpoint kinase 1 (Chk1) is a cell cycle regulator and a heat shock protein 90 (Hsp90) client. It is essential for cell proliferation and survival. In this report, we analyzed the mechanisms of Chk1 regulation in U87MG glioblastoma cells using Geldanamycin (GA), which interferes with the function of Hsp90. GA reduced Chk1 protein level but not its mRNA level in glioblastoma cells. Co-treatment with GA and cycloheximide (CHX), a protein synthesis inhibitor, induced a decrease of half-life of the Chk1 protein to 3h and resulted in Chk1 down-regulation. CHX alone induced only 32% reduction of Chk1 protein even after 24h. These findings indicated that reduction of Chk1 by GA was due to destabilization and degradation of the protein. In addition, GA-induced down-regulation of Chk1 was reversed by MG132, a specific proteasome inhibitor. And it was revealed that Chk1 was ubiquitinated by GA. These results have indicated that degradation of Chk1 by GA was mediated by the ubiquitin-proteasome pathway in U87MG glioblastoma cells.  相似文献   

12.
Drews O  Zong C  Ping P 《Proteomics》2007,7(7):1047-1058
The ubiquitin proteasome system (UPS) represents a major pathway for intracellular protein degradation. Proteasome dependent protein quality control participates in cell cycle, immune response and apoptosis. Therefore, the UPS is in focus of therapeutic investigations and the development of pharmaceutical agents. Detailed analyses on proteasome structure and function are the foundation for drug development and clinical studies. Proteomic approaches contributed significantly to our current knowledge in proteasome research. In particular, 2-DE has been essential in facilitating the development of current models on molecular composition and assembly of proteasome complexes. Furthermore, developments in MS enabled identification of UPS proteins and their PTMs at high accuracy and high-throughput. First results on global characterization of the UPS are also available. Although the UPS has been intensively investigated within the last two decades, its functional significance and contribution to the regulation of cell and tissue phenotypes remain to be explored. This review recapitulates a variety of applied proteomic approaches in proteasome exploration, and presents an overview of current technologies and their potential in driving further investigations.  相似文献   

13.
The ubiquitin–proteasome system (UPS) is the primary selective degradation system in the nuclei and cytoplasm of eukaryotic cells, required for the turnover of myriad soluble proteins. The hundreds of factors that comprise the UPS include an enzymatic cascade that tags proteins for degradation via the covalent attachment of a poly-ubiquitin chain, and a large multimeric enzyme that degrades ubiquitinated proteins, the proteasome. Protein degradation by the UPS regulates many pathways and is a crucial component of the cellular proteostasis network. Dysfunction of the ubiquitination machinery or the proteolytic activity of the proteasome is associated with numerous human diseases. In this review we discuss the contributions of the proteasome to human pathology, describe mechanisms that regulate the proteolytic capacity of the proteasome, and discuss strategies to modulate proteasome function as a therapeutic approach to ameliorate diseases associated with altered UPS function. This article is part of a Special Issue entitled: Ubiquitin–Proteasome System. Guest Editors: Thomas Sommer and Dieter H. Wolf.  相似文献   

14.
Proteins that fail to fold or assemble in the endoplasmic reticulum (ER) are destroyed by cytoplasmic proteasomes through a process known as ER-associated degradation. Substrates of this pathway are initially sequestered within the ER lumen and must therefore be dislocated across the ER membrane to be degraded. It has been proposed that generation of bicellar structures during lipid droplet formation may provide an "escape hatch" through which misfolded proteins, toxins, and viruses can exit the ER. We have directly tested this hypothesis by exploiting yeast strains defective in lipid droplet formation. Our data demonstrate that lipid droplet formation is dispensable for the dislocation of a plant toxin and the degradation of both soluble and integral membrane glycoproteins.  相似文献   

15.
The 26 S proteasomal complex, which is responsible for the bulk of protein degradation within the cell, recognizes its target substrates via covalently linked polyubiquitin moieties. However, a small but growing number of proteasomal substrates are degraded without a requirement for ubiquitinylation. One such substrate is the pyrimidine biosynthetic enzyme thymidylate synthase (EC 2.1.1.45), which catalyzes the synthesis of TMP and is the sole de novo source of TTP for DNA replication and repair. Previous work showed that intracellular proteolysis of human thymidylate synthase is directed by a degron at the polypeptide's N-terminal end, composed of an intrinsically disordered region (IDR) followed by a highly conserved amphipathic α-helix (hA). In the present report, we show that the hA helix does not function simply as an extension or scaffold for the IDR; rather, it provides a specific structural component that is necessary for degradation. Furthermore, its helical conformation is required for this function. We demonstrate that small domains from heterologous proteins can substitute for the IDR and the hA helix of human thymidylate synthase, indicating that the degradation-promoting function of these regions is not sequence-specific. The results, in general, indicate that cooperation between intrinsically disordered domains and α-helical segments is required for ubiquitin-independent degradation by the proteasome. There appears to be little sequence constraint on the ability of these regions to function as degron constituents. Rather, it is the overall conformation (or lack thereof) that is critical.  相似文献   

16.
Degradation of oxidized extracellular proteins by microglia   总被引:11,自引:0,他引:11  
In living organisms a permanent oxidation of protein oxidation occurs. The degradation of intracellular oxidized proteins is intensively studied, but knowledge about the fate of oxidatively modified extracellular proteins is still limited. We studied the fate of exogenously added oxidized proteins in microglial cells. Both primary microglial cells and RAW cells are able to remove added oxidized laminin and myelin basic protein from the extracellular environment. Moderately oxidized proteins are degraded most efficiently, whereas strongly oxidized proteins are taken up by the microglial cells without an efficient degradation. Activation of microglial cells enhances the selective recognition and degradation of moderately oxidized protein substrates by proteases. Inhibitor studies also revealed an involvement of the lysosomal and the proteasomal system in the degradation of extracellular proteins. These studies let us conclude that microglial cells are able to remove oxidized proteins from the extracellular environment in the brain.  相似文献   

17.
The 26 S proteasome possesses two distinct deubiquitinating activities. The ubiquitin (Ub) chain amputation activity removes the entire polyUb chain from the substrates. The Ub chain trimming activity progressively cleaves a polyUb chain from the distal end. The Ub chain amputation activity mediates degradation-coupled deubiquitination. The Ub chain trimming activity can play a supportive or an inhibitory role in degradation, likely depending on features of the substrates. How Ub chain trimming assists degradation is not clear. We find that inhibition of the chain trimming activity of the 26 S proteasome with Ub aldehyde significantly inhibits degradation of Ub4 (Lys-48)-UbcH10 and causes accumulation of free Ub4 (generated from chain amputation) that can be retained on the proteasome. Also, a non-trimmable Lys-48-mimic Ub4 efficiently targets UbcH10 to the 26 S proteasome, but it cannot support efficient degradation of UbcH10 compared with regular Lys-48 Ub4. These results indicate that polyUb chain trimming promotes proteasomal degradation of Lys-48-linked substrates. Mechanistically, we propose that Ub chain trimming cleaves the proteasome-bound Lys-48-linked polyUb chains, which vacates the Ub binding sites of the 26 S proteasome, thus allowing continuous substrate loading.  相似文献   

18.
19.
Alpha-synuclein is a small protein implicated in the pathophysiology of Parkinson's disease (PD). We have investigated the mechanism of cleavage of alpha-synuclein by the 20S proteasome. Alpha-synuclein interacts with the C8 (α7) subunit of the proteasome. The N-terminal part of alpha-synuclein (amino acids 1–60) is essential for its proteasomal degradation and analysis of peptides released from proteasomal digestion allows concluding that initial cleavages occur within the N-terminal region of the molecule. Aggregated alpha-synucleins are also degraded by the proteasome with a reduced rate, likely due to Met oxidation. In fact, mild oxidation of alpha-synuclein with H2O2 resulted in the inhibition of its degradation by the proteasome, mainly due to oxidation of Met 1 and 5 of alpha-synuclein. The inhibition was reversed by treatment of the oxidized protein with methionine sulfoxide reductases (MsrA plus MsrB). Similarly, treatment with H2O2 of N2A cells transfected with alpha-synuclein resulted in the inhibition of its degradation that was also reverted by co-transfection of MsrA plus MsrB. These results clearly indicate that oxidative stress, a common feature of PD and other synucleinopathies, promotes a RedOx change in the proteostasis of alpha-synuclein due to Met oxidation and reduced proteasomal degradation; compromised reversion of those oxidative changes would result in the accumulation of oxidative damaged alpha-synuclein likely contributing to the pathogenesis of PD.  相似文献   

20.
This work proposes a modification of the 2,4-dinitrophenylhydrazine (DNPH) spectrophotometric assay commonly used to evaluate the concentration of carbonyl groups in oxidized proteins. In this approach NaOH is added to the protein solution after the addition of DNPH, shifting the maximum absorbance wavelength of the derivatized protein from 370 to 450 nm. This reduces the interference of DNPH and allows the direct quantification in the sample solution without the need for the precipitation, washing, and resuspension steps that are carried out in the traditional DNPH method. The two methods were compared under various conditions and are statistically equivalent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号