首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
Bone remodeling, energy metabolism, and the molecular clock   总被引:4,自引:0,他引:4  
The adult skeleton is constantly renewed through bone remodeling. Four recent papers (Baldock et al., 2007; Lee et al., 2007; Lundberg et al., 2007; Sato et al., 2007) provide new insights into central and peripheral control of this remodeling sequence. Two of the studies add to our knowledge of the complex hypothalamic modulation of bone turnover mediated by NMU and NPY via the sympathetic nervous system, while the other two focus on the peripheral neural target, the osteoblast, and its regulation by neuropeptides and osteocalcin. These findings support a new paradigm concerning the regulation of bone remodeling and provide a foundation for novel approaches to preventing osteoporosis.  相似文献   

2.
Accelerated osteoclastic bone resorption has a central role in the pathogenesis of osteoporosis and other bone diseases. Identifying the molecular pathways that regulate osteoclast activity provides a key to understanding the causes of these diseases and to the development of new treatments. Here we show that mice with inactivation of cannabinoid type 1 (CB1) receptors have increased bone mass and are protected from ovariectomy-induced bone loss. Pharmacological antagonists of CB1 and CB2 receptors prevented ovariectomy-induced bone loss in vivo and caused osteoclast inhibition in vitro by promoting osteoclast apoptosis and inhibiting production of several osteoclast survival factors. These studies show that the CB1 receptor has a role in the regulation of bone mass and ovariectomy-induced bone loss and that CB1- and CB2-selective cannabinoid receptor antagonists are a new class of osteoclast inhibitors that may be of value in the treatment of osteoporosis and other bone diseases.  相似文献   

3.
Several cannabinoid receptors have been detected in many organisms. The best known are CB1, mainly expressed in the central nervous system and CB2 which is almost exclusively expressed in the periphery. Here we report the molecular characterization of two duplicate CB2-like cannabinoid receptors from zebrafish (Danio rerio) (zebrafish Cb2a and zebrafish Cb2b). The amino acid sequences of these receptors present 56% identity with Takifugu rubripes CB2 sequence and 39% with human CB2 sequence and conserve some specific key residues for cannabinoid receptor function. Both duplicate receptors are expressed in peripheral tissues (gills, heart, intestine and muscle), immune tissue (spleen) and also in the central nervous system. Using in situ hybridization techniques zebrafish Cb2 mRNA expression was observed for the first time in the adenohypophysial cells of the rostral pars distalis and proximal pars distalis of the pituitary gland. Given the importance of the existence of duplication of genes in teleosts, the combined analysis of these two new cannabinoid receptors opens a new exciting door to investigate and understand cannabinoid function throughout evolution.  相似文献   

4.
Neuropeptide Y (NPY) is one of the most abundant neuropeptides in the mammalian brain and exerts a variety of physiological processes in humans via four different receptor subtypes Y1, Y2, Y4 and Y5. Y2 receptor is the most abundant Y subtype receptor in the central nervous system and implicated with food intake, bone formation, affective disorders, alcohol and drugs of abuse, epilepsy, pain, and cancer. The lack of small molecule non-peptidic Y2 receptor modulators suitable as in vivo pharmacological tools hampered the progress to uncover the precise pharmacological role of Y2. Only in recent years, several potent, selective and non-peptidic Y2 antagonists have been discovered providing the tools to validate Y2 receptor as a therapeutic target. This Letter reviews Y2 receptor modulators mainly non-peptidic antagonists and their structure–activity relationships.  相似文献   

5.
It is known today that the immune system is influenced by various types of psychological and physiological stressors, including physical activity. It is well known that physical activity can influence neuropeptide levels both in the central nervous system as well as in peripheral blood. The reported changes of immune function in response to exercise have been suggested to be partly regulated by the activation of different neuropeptides and the identification of receptors for neuropeptides and steroid hormones on cells of the immune system has created a new dimension in this endocrine-immune interaction. It has also been shown that immune cells are capable of producing neuropeptides, creating a bidirectional link between the nervous and immune systems. The most common neuropeptides mentioned in this context are the endogenous opioids. The activation of endogenous opioid peptides in response to physical exercise is well known in the literature, as well as the immunomodulation mediated by opioid peptides. The role of endogenous opioids in the exercise-induced modulation of immune function is less clear. The present paper will also discuss the role of other neuroendocrine factors, such as substance P, neuropeptide Y and vasoactive intestinal peptide, and pituitary hormones, including growth hormone, prolactin and adrenocorticotrophin, in exercise and their possible effects on immune function.  相似文献   

6.
7.
Vasoactive Intestinal Peptide (VIP) and Pituitary Adenylyl Cyclase Activating Peptide (PACAP) are two closely related neuropeptides in the secretin family. They are widely expressed in the central and peripheral nervous systems, where they are classically thought to act as neurotransmitters or neuromodulators. They interact with high affinity receptors to regulate numerous behaviors as well as gastrointestinal, endocrine, cardiopulmonary, reproductive and immune functions. The recent generation of mice that specifically lack or overexpress VIP, PACAP or their receptors has yielded much new knowledge and enabled investigators to better understand the biological roles of these peptides and their impact on health. In this review, we attempt to summarize the major findings, but focus in greatest detail on the circadian and immune functions.Australian Peptite Conference Issue.  相似文献   

8.
For many years, the central nervous system and the immune system were considered two autonomous entities. However, extensive research in the field of neuroimmunomodulation during the past decades has demonstrated the presence of different neuropeptides and their respective receptors in the immune cells. More importantly, it has provided evidence for the direct effects of neuropeptides on the immune cell functions. Neuropeptide Y (NPY) is generally considered the most abundant peptide in the central and peripheral nervous system. However, it is also distinguished by exhibiting pleiotropic functions in many other physiological systems, including the immune system. NPY affects the functions of the cells of the adaptive and innate immunity. In this respect, NPY is known to modulate immune cell trafficking, T helper cell differentiation, cytokine secretion, natural killer cell activity, phagocytosis and the production of reactive oxygen species. The specific Y receptors have been found in immune cells, and their expression is amplified upon immune stimulation. Different Y receptor subtypes may mediate an opposite effect of NPY on the particular function, thus underlining its regulatory role. Since the immune cells are capable of producing NPY upon appropriate stimulation, this peptide can regulate immune cell functions in an autocrine/paracrine manner. NPY also has important implications in several immune-mediated disorders, which affirms the clear need for further investigation of its role in either the mechanisms of the disease development or its possible therapeutic capacity. This review summarises the key points of NPY’s mission throughout the immune system.  相似文献   

9.
The assembly of functional neuronal circuits depends on the correct wiring of axons and dendrites. To reach their targets, axons are guided by a variety of extracellular guidance cues, including Netrins, Ephrins, Semaphorins and Slits. Corresponding receptors in the growth cone, the dynamic structure at the tip of the growing axon, sense and integrate these positional signals, and activate downstream effectors to regulate cytoskeletal organization. In addition to the four canonical families of axon guidance cues mentioned above, some proteins that regulate planar cell polarity were recently found to be critical for axon guidance. The seven-transmembrane domain receptors Celsr3 and Fzd3, in particular, control the development of most longitudinal tracts in the central nervous system, and axon navigation in the peripheral, sympathetic and enteric nervous systems. Despite their unequivocally important role, however, underlying molecular mechanisms remain elusive. We do not know which extracellular ligands they recognize, whether they have co-receptors in the growth cone, and what their downstream effectors are. Here, we review some recent advances and discuss future trends in this emerging field.  相似文献   

10.
Y2 receptors, particularly those in the brain, have been implicated in neuropeptide Y (NPY)-mediated effects on energy homeostasis and bone mass. Recent evidence also indicates a role for Y2 receptors in peripheral tissues in this process by promoting adipose tissue accretion; however their effects on energy balance remain unclear. Here, we show that adult-onset conditional knockdown of Y2 receptors predominantly in peripheral tissues results in protection against diet-induced obesity accompanied by significantly reduced weight gain, marked reduction in adiposity and improvements in glucose tolerance without any adverse effect on lean mass or bone. These changes occur in association with significant increases in energy expenditure, respiratory exchange ratio, and physical activity and despite concurrent hyperphagia. On a chow diet, knockdown of peripheral Y2 receptors results in increased respiratory exchange ratio and physical activity with no effect on lean or bone mass, but decreases energy expenditure without effecting body weight or food intake. These results suggest that peripheral Y2 receptor signaling is critical in the regulation of oxidative fuel selection and physical activity and protects against the diet-induced obesity. The lack of effects on bone mass seen in this model further indicates that bone mass is primarily controlled by non-peripheral Y2 receptors. This study provides evidence that novel drugs that target peripheral rather than central Y2 receptors could provide benefits for the treatment of obesity and glucose intolerance without adverse effects on lean and bone mass, with the additional benefit of avoiding side effects often associated with pharmaceuticals that act on the central nervous system.  相似文献   

11.
12.
Anorexia nervosa (AN) belongs to a group of eating disorders and is characterized by extreme body weight loss. AN patients show combination of physical, psychological and behavioral disturbances. Neuropeptides partly control energy homeostasis and modulate hormone release. Leptin, a peptide secreted by adipocytes, may influence the interactions between central and peripheral signals. Hypoleptinaemia found in AN is connected with disturbed control of appetite and hormonal dysfunction as well as has implications for the hypothalamo-pituitary-gonadal axis, bone mineral density and physical hyperactivity. Low leptin levels are increased with refeeding. However, the prolonged hypoleptinaemia in weight recovered AN patients may result in persistent hypothalamic amenorrhoea. The hyperactivity has been observed in 31-80 % of AN cases. The mechanisms underlying the hyperactivity found in patients with anorexia nervosa seem to be more complicated as many factors including neuropeptides may be involved. Orexins may affect not only appetite but also behavior and psychophysical activity as they may regulate reproductive and stress hormone secretion, stimulate a variety of stereotypic behaviors including eating and stress reaction, and affect the hypothalamo-pituitary-adrenal (HPA) axis, alter glucocorticoid and catecholamine secretion and activate the sympathetic nervous system. Orexins influence the mechanism regulating arousal and sleep, cardiovascular function, temperature, metabolic rate and locomotive activity. It is worth considering how abnormal activity of hypothalamic neuropeptides or their receptors may play a role in the mechanisms of hyperactivity, disturbed control of appetite and hormonal dysfunction in patients with anorexia nervosa.  相似文献   

13.
Opioids and neuropeptides: mechanisms in circulatory shock   总被引:2,自引:0,他引:2  
Endogenous opioid systems are activated in stressful situations such as circulatory shock. The opiate antagonist naloxone improves cardiovascular function in several models of shock caused by endotoxemia, hypovolemia, anaphylaxis, and spinal trauma. The ergotropic neuropeptide, thyrotropin-releasing hormone, in supraphysiological doses, also improves cardiovascular function in these shock models, but this effect does not result from action at the opiate receptor. For both these agents a central nervous system (CNS) site of action has been partially characterized. A variety of neuropeptides, including the opioids, seem capable of modulating autonomic function through their CNS actions. In addition, they may play a role in peripheral integration and transmission of autonomic nervous activity by actions at the ganglia and/or at nerve endings. Some neuropeptides also have direct autacoid effects on cells, including those of the microvasculature. This raises new questions concerning possible peripheral functions of neuropeptides during circulatory shock, and the nature of their interactions with other potential shock mediators such as monokines and arachidonic acid derivatives.  相似文献   

14.
Multimodal stimuli like heat, cold, bacterial or mechanical events are able to elicit pain, which is necessary to guarantee survival. However, the control of pain is of major clinical importance. The perception and transduction of pain is differentially modulated in the peripheral and central nervous system (CNS): while peripheral structures modulate these signals, the perception of pain occurs in the CNS. In recent years major advances have been made in the understanding of the processes which are involved in pain sensation. For the peripheral pain reception, the importance of specific pain receptors of the transition receptor pore (TRP)-family (e.g. the TRPV-1 receptor) has been analyzed. These receptors/channels are localized at the cell membrane of nociceptive neurones as well as in membranes of intracellular calcium stores like the endoplasmic reticulum. While the associated channel conducts different ions, a major proportion is calcium. Therefore, this review focuses on (1) the modulations of intracellular calcium ([Ca2+]i) initiated by the activation of pain receptors and (2) the consequences of [Ca2+]i changes for the processing of pain signals at the peripheral side. The possible interference of TRPV-1 induced [Ca2+]i modulations to the function of other membrane receptors and channels, like voltage gated calcium, sodium or potassium channels, or co-expressed CB1-receptors will be discussed. The latter interactions are of specific interest since the analgetic properties of endo- and exo-cannabinoids are mediated by CB1 receptors and their activation significantly modulates the calcium induced release of pain related transmitters. Furthermore, multiple cross links between different pain modulating intracellular pathways and their dependence on [Ca2+]i modulations will be illuminated. Overall, this review will summarize new insights resulting in the understanding of the prominent influence of [Ca2+]i for processes which are involved in pain sensation.  相似文献   

15.
Neuropeptide Y and peptide YY neuronal and endocrine systems   总被引:11,自引:0,他引:11  
An extensive system of neuropeptide Y (NPY) containing neurons has recently been identified in the central and peripheral nervous system. In addition, NPY and a structurally related peptide, peptide YY (PYY), containing endocrine cells have been identified in the periphery. The NPY system is of particular interest as the peptide coexists with catecholamines in the central and sympathetic nervous system and adrenal medulla. Evidence has been presented which indicates that NPY may play important roles in regulating autonomic function.  相似文献   

16.
Immunohistochemical phenotypic characterization of skeletal nerve fibers has demonstrated the expression of a restricted number of neuropeptides, including calcitonin gene-related peptide (CGRP), substance P (SP) and vasoactive intestinal peptide (VIP). According to the neuro-osteological hypothesis, such neuropeptides can be released and exert paracrine biological effects on bone cells present close to the nerve endings expressing these signaling molecules. The existence of such interplay is most convincingly shown by the hypothalamic control of bone formation, in the case of leptin stimulation of hypothalamic nuclei mediated by the sympathetic nervous system and inhibitory beta-adrenergic receptors on osteoblasts. In addition to these receptors, osteoblasts and osteoclasts express functional receptors for CGRP, SP and VIP, which can regulate both bone formation and bone resorption. The evidence for these observations is summarized in the present paper.  相似文献   

17.
18.
R G Pertwee 《Life sciences》1999,65(6-7):597-605
The discovery of CB1 and CB2 receptors and of endogenous agonists for these receptors has sparked renewed interest in the therapeutic potential of cannabinoids. This has led to a need for strategies that will provide a better separation of wanted from unwanted effects, particularly for CB1 receptor agonists. Possible strategies are to target CB1 receptors present on neurones outside the central nervous system or novel types or subtypes of neuronal cannabinoid receptor. This paper reviews evidence for the presence of CB1 receptors on peripheral neurones and for the existence of neuronal non-CB1 cannabinoid receptors.  相似文献   

19.
20.
Signals derived from the autonomic nervous system exert potent effects on osteoclast and osteoblast function. A ubiquitous sympathetic and sensory innervation of all periosteal surfaces exists and its disruption affects bone remodeling. Several neuropeptides, neurohormones and neurotransmitters and their receptors are detectable in bone. Bone mineral content decreased in sympathetically denervated mandibular bone. When a mechanical stress was superimposed on mandibular bone by cutting out the lower incisors, an increase in bone density ensued providing the sympathetic innervation was intact. A lower eruption rate of sympathetically denervated incisors at the impeded eruption side, and a higher eruption rate of denervated incisors at the unimpeded side were also observed. A normal sympathetic neural activity appears to be a pre-requisite for maintaining a minimal normal unimpeded incisor eruption and for keeping the unimpeded eruption to attain abnormally high velocities under conditions of stimulated incisor growth. These and other results suggest that the sympathetic nervous system plays an important role in mandibular bone metabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号