首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have recently shown that inhibition of nitric oxide (NO) synthesis by asymmetrical dimethylarginine (ADMA) accelerated endothelial cell (EC) senescence which was prevented by coincubation with l-arginine; however the effect of long-term treatment of l-arginine alone on senescence of ECs have not been investigated. Human ECs were cultured in medium containing different concentrations of l-arginine until senescence. l-Arginine paradoxically accelerated senescence indicated by inhibiting telomerase activity. Moreover, l-arginine decreased NO metabolites, increased peroxynitrite, and 8-iso-prostaglandin F formation. In old cells, the mRNA expression of human amino acid transporter (hCAT)2B, the activity and protein expression of arginase II were upregulated indicated by enhanced urea, l-ornithine, and l-arginine consumption. Inhibition of arginase activity, or transfection with arginase II siRNA prevented l-arginine-accelerated senescence. The most possible explanation for the paradoxical acceleration of senescence by l-arginine so far may be the translational and posttranslational activation of arginase II.  相似文献   

2.
Pulmonary inflammation in asthma is orchestrated by the activity of NF-kappaB. NO and NO synthase (NOS) activity are important modulators of inflammation. The availability of the NOS substrate, l-arginine, is one of the mechanisms that controls the activity of NOS. Arginase also uses l-arginine as its substrate, and arginase-1 expression is highly induced in a murine model of asthma. Because we have previously described that arginase affects NOx content and interferes with the activation of NF-kappaB in lung epithelial cells, the goal of this study was to investigate the impact of arginase inhibition on the bioavailability of NO and the implications for NF-kappaB activation and inflammation in a mouse model of allergic airway disease. Administration of the arginase inhibitor BEC (S-(2-boronoethyl)-l-cysteine) decreased arginase activity and caused alterations in NO homeostasis, which were reflected by increases in S-nitrosylated and nitrated proteins in the lungs from inflamed mice. In contrast to our expectations, BEC enhanced perivascular and peribronchiolar lung inflammation, mucus metaplasia, NF-kappaB DNA binding, and mRNA expression of the NF-kappaB-driven chemokine genes CCL20 and KC, and lead to further increases in airways hyperresponsiveness. These results suggest that inhibition of arginase activity enhanced a variety of parameters relevant to allergic airways disease, possibly by altering NO homeostasis.  相似文献   

3.
Nitric oxide (NO) has been shown to inhibit Giardia lamblia in vitro and in vivo. This study sought to determine if Giardia infection induces arginase 1 (ARG1) expression in host macrophages to reduce NO production. Stimulations of RAW 264.7 macrophage-like cells with Giardia extract induced arginase activity. Real-time PCR and immunohistochemistry showed increased ARG1 and nitric oxide synthase 2 (NOS2) expression in mouse intestine following infection. Flow cytometry demonstrated increased numbers of macrophages positive for both ARG1 and NOS2 in lamina propria following infection, but there was no evidence of increased expression of ARG1 in these cells.  相似文献   

4.
《Free radical research》2013,47(3):137-145
Abstract

Nitric oxide (NO) is produced from the conversion of L-arginine by NO synthase (NOS) and regulates a variety of processes in the gastrointestinal tract. Considering the increased activity of arginase in colitis tissue, it is speculated that arginase could inhibit NO synthesis by competing for the same L-arginine substrate, resulting in the exacerbation of colitis. We examined the role of arginase and its relationship to NO metabolism in dextran sulfate sodium (DSS)-induced colitis. Experimental colitis was induced in mice by administration of 2.5% DSS in drinking water for 8 days. Treatment for arginase inhibition was done by once daily intraperitoneal injection of Nω-hydroxy-nor- arginine (nor-NOHA). On day 8, we evaluated clinical parameters (body weight, disease activity index, and colon length), histological features, the activity and expression of arginase, L-arginine content, the expression of NO synthase (NOS), and the concentration of NO end-product (NOx: nitrite + nitrate). Administration of nor-NOHA improved the worsened clinical parameters and histological features in DSS-induced colitis. Treatment with nor-NOHA attenuated the increased activity of arginase, upregulation of arginase Ι at both mRNA and protein levels, and decreased the content of L-arginine in colonic tissue in the DSS-treated mice. Conversely, despite the decreased expression of NOS2 mRNA, the decreased concentration of NOx in colonic tissues was restored to almost normal levels. The consumption of L-arginine by arginase could lead to decreased production of NO from NOS, contributing to the pathogenesis of the colonic inflammation; thus, arginase inhibition might be effective for improving colitis.  相似文献   

5.
The activity of arginase converting arginine into ornithine and urea is of particular interest among many factors regulating NO production in the cells. It is known that by competing with NO-synthase for common substrate (arginine), arginase can affect NO synthesis. In the present work, properties of arginase from the common frog Rana temporaria L. urinary bladder epithelial cells containing the NO-synthase were characterized, and possible contribution of arginase to regulation of NO production by epithelial cells was studied. It has been shown that the enzyme has temperature optimum in the range of 55–60°C, K M for arginine 23 mM, and V max about 10 nmole urea/mg of protein/min, and its activity was efficiently inhibited by (S)-(2-boronoethyl)-L-cysteine (BEC), an inhibitor of arginase, at concentrations from 10?6 to 10?4 M. The comparison of arginase activity in various frog tissues revealed the following pattern: liver > kidney > brain > urinary bladder (epithelium) > heart > testis. The arginase activity in isolated urinary bladder epithelial cells was 3 times higher that in the intact urinary bladder wall. To evaluate the role of arginase in regulation of NO production, the epithelial cells were cultivated in the media L-15 or 199 containing different amounts of arginine; the concentration of NO2 ?, the stable NO metabolites, was de-termined in the cultural fluid after 18–20 h of cell incubation. The vast majority of the produced nitrites are associated with NOS activity, as L-NAME, the NO inhibitor, decreased their accumulation by 77.1% in the L-15 medium and by 80% in the 199 medium. BEC (10?4 M) increased nitrite production by 18.0% ± 2.7% in the L-15 medium and by 24.4% ± 3.5% in the 199 medium (p < 0.05). The obtained data indicate a relatively high activity of arginase in the frog urinary bladder epithelium and its involvement in regulation of NO production.  相似文献   

6.
In stimulated murine macrophage, arginase and nitric oxide synthase (NOS) compete for their common substrate, l-arginine. The objectives of this study were (i) to test the new alpha-amino acid N(omega)-hydroxy-nor-l-arginine (nor-NOHA) as a new selective arginase inhibitor and (ii) to elucidate the effects of arginase inhibition on l-arginine utilization by an inducible NOS. Nor-NOHA is about 40-fold more potent than N(omega)-hydroxy-l-arginine (NOHA), an intermediate in the l-arginine/NO pathway, to inhibit the hydrolysis of l-arginine to l-ornithine catalyzed by unstimulated murine macrophages (IC(50) values 12 +/- 5 and 400 +/- 50 microM, respectively). Stimulation of murine macrophages with interferon-gamma and lipopolysaccharide (IFN-gamma + LPS) results in clear expression of an inducible NOS (iNOS) and to an increase in arginase activity. Nor-NOHA is also a potent inhibitor of arginase in IFN-gamma + LPS-stimulated macrophage (IC(50) value 10 +/- 3 microM). In contrast to NOHA, nor-NOHA is neither a substrate nor an inhibitor for iNOS and it appears as a useful tool to study the interplays between arginase and NOS. Inhibition of arginase by nor-NOHA increases nitrite and l-citrulline accumulation for incubation times higher than 12 h, under our conditions. Our results allow the determination of the kinetic parameters of the two competitive pathways and the proposal of a simple model which readily explains the differences observed between experiments. This model readily accounts for the observed effects and should be useful to predict the consequences of arginase inhibition in the presence of an active NOS on l-arginine availability.  相似文献   

7.
Both arginase isoforms (AI and AII) regulate high-level NO production by the inducible NOS, but whether the arginase isoforms also regulate low-level NO production by neuronal NOS (nNOS) is not known. In this study, 293 cells that stably overexpress nNOS gene (293nNOS cells) were transfected with rat AI (pEGFP-AI) or AII (pcDNA-AII) plasmids, and nitrite production was measured with or without supplemental L-arginine. Transfection with pEGFP-AI increased AI expression and activity 10-fold and decreased intracellular l-arginine by 50%. Nitrite production was inhibited by >80% when no l-arginine was supplemented but not when 1 mM L-arginine was present. The inhibition was reversed by an arginase inhibitor, N(omega)-hydroxy-L-arginine. Transfection with pcDNA-AII increased AII expression and activity but had little effect on nitrite production even if no l-arginine was added. These results suggest that, in 293nNOS cells, AI was more effective in regulating NO production by nNOS, most likely by competing for L-arginine.  相似文献   

8.
Nitric oxide (NO) is the principal mediator of penile erection. NO is synthesized by nitric oxide synthase (NOS). It has been well documented that the major causative factor contributing to erectile dysfunction in diabetic patients is the reduction in the amount of NO synthesis in the corpora cavernosa of the penis resulting in alterations of normal penile homeostasis. Arginase is an enzyme that shares a common substrate with NOS, thus arginase may downregulate NO production by competing with NOS for this substrate, l-arginine. The purpose of the present study was to compare arginase gene expression, protein levels, and enzyme activity in diabetic human cavernosal tissue. When compared to normal human cavernosal tissue, diabetic corpus cavernosum from humans with erectile dysfunction had higher levels of arginase II protein, gene expression, and enzyme activity. In contrast, gene expression and protein levels of arginase I were not significantly different in diabetic cavernosal tissue when compared to control tissue. The reduced ability of diabetic tissue to convert l-arginine to l-citrulline via nitric oxide synthase was reversed by the selective inhibition of arginase by 2(S)-amino-6-boronohexanoic acid (ABH). These data suggest that the increased expression of arginase II in diabetic cavernosal tissue may contribute to the erectile dysfunction associated with this common disease process and may play a role in other manifestations of diabetic disease in which nitric oxide production is decreased.  相似文献   

9.
Nitric oxide (NO) is crucial for maintaining normal endothelial function and vascular integrity. Increased arginase activity in diabetes might compete with NO synthase (NOS) for their common substrate arginine, resulting in diminished production of NO. The aim of this study was to evaluate coronary microvascular function in type 2 diabetic Goto-Kakizaki (GK) rats using in vivo coronary flow velocity reserve (CFVR) and the effect of arginase inhibition to restore vascular function. Different groups of GK and Wistar rats were given vehicle, the arginase inhibitor N(ω)-hydroxy-nor-l-arginine (nor-NOHA), l-arginine, and the NOS inhibitor N(G)-monomethyl -l-arginine (l-NMMA). GK rats had impaired CFVR compared with Wistar rats (1.31 ± 0.09 vs. 1.87 ± 0.05, P < 0.001). CFVR was restored by nor-NOHA treatment compared with vehicle in GK rats (1.71 ± 0.13 vs. 1.23 ± 0.12, P < 0.05) but remained unchanged in Wistar rats (1.88 ± 0.10 vs. 1.79 ± 0.16). The beneficial effect of nor-NOHA in GK rats was abolished after NOS inhibition. CFVR was not affected by arginine compared with vehicle. Arginase II expression was increased in the aorta and myocardium from GK rats compared with Wistar rats. Citrulline-to-ornithine and citrulline-to-arginine ratios measured in plasma increased significantly more in GK rats than in Wistar rats after nor-NOHA treatment, suggesting a shift of arginine utilization from arginase to NOS. In conclusion, coronary artery microvascular function is impaired in the type 2 diabetic GK rat. Treatment with nor-NOHA restores the microvascular function by a mechanism related to increased utilization of arginine by NOS and increased NO availability.  相似文献   

10.
Nitric oxide (NO) has been suggested to play a key role in the pathogenesis of pulmonary hypertension (PH). To determine which mechanism exists to affect NO production, we examined the concentration of endogenous nitric oxide synthase (NOS) inhibitors and their catabolizing enzyme dimethylarginine dimethylaminohydrolase (DDAH) activity and protein expression (DDAH1 and DDAH2) in pulmonary artery endothelial cells (PAECs) of rats given monocrotaline (MCT). We also measured NOS and arginase activities and NOS protein expression. Twenty-four days after MCT administration, PH and right ventricle (RV) hypertrophy were established. Endothelium-dependent, but not endothelium-independent, relaxation and cGMP production were significantly impaired in pulmonary artery specimens of MCT group. The constitutive NOS activity and protein expression in PAECs were significantly reduced in MCT group, whereas the arginase, which shares l-arginine as a common substrate with NOS, activity was significantly enhanced in PAECs of MCT group. The contents of monomethylarginine (MMA) and asymmetric dimethylarginine (ADMA), but not symmetric dimethylarginine (SDMA), were increased in PAECs of MCT group. The DDAH activity and DDAH1, but not DDAH2, protein expression were significantly reduced in PAECs of MCT group. These results suggest that the impairment of cGMP production as a marker of NO production is possibly due to the blunted endothelial NOS activity resulting from the downregulation of endothelial NOS protein, accumulation of endogenous NOS inhibitors, and accelerated arginase activity in PAECs of PH rats. The decreased overall DDAH activity accompanied by the downregulation of DDAH1 would bring about the accumulation of endogenous NOS inhibitors.  相似文献   

11.
Food effects on the absorption and pharmacokinetics of cocoa flavanols   总被引:1,自引:0,他引:1  
Macronutrients in food and gastric acid are known to have a pronounced effect on the metabolism of many xenobiotics, an effect that impacts their efficacy as bioactive agents. In this investigation we assessed the impact of select food treatments and the histamine H(2)-receptor antagonist Famotidine (Pepcid-AC) on flavanol absorption and metabolism. Four crossover intervention studies were conducted with 6 subjects each. Volunteers consumed sugar-free, flavanol-rich cocoa (0.125 g/kg body wt) alone, with macronutrient-rich foods (8.75 or 17.5 kJ/kg subject body wt) or Famotidine (Pepcid-AC). Blood samples were drawn at 5 time points including baseline. Plasma samples were analyzed for epicatechin and catechin flavanols by HPLC. Pharmacokinetic parameters were assessed using non-compartmental methodology. When provided at 17.5 kJ/kg subject body weight (approximately 4 kcal/kg), sugar and bread test meals increased flavanol area under the curve (AUC) values to 140% of control values (P < 0.05). A corresponding tendency for plasma antioxidant capacity to increase was observed for the cocoa treatment at 1.5 and 2.5 h (P < 0.17, P < 0.06, respectively). The ability of treatment meals to affect AUC values was positively correlated with treatment carbohydrate content (r = 0.83; P< 0.02). In contrast to carbohydrate rich meals, lipid and protein rich meals and Famotidine treatment had minimal effects on flavanol absorption. Based on C(max) and AUC values, this data suggests that the uptake of flavanols can be increased significantly by concurrent carbohydrate consumption.  相似文献   

12.
Since both increased nitric oxide (NO) synthase (NOS) abundance and diminished NO signaling have been reported in the aging penis, the role of NO in the adaptations of aging remains controversial. Here we tested the hypothesis that arginase, an enzyme that competes with NOS for the substrate l-arginine, contributes to erectile dysfunction with advanced age in the B6/129 mouse strain. Arginase protein abundance, mRNA expression, and enzyme activity were elevated in aged compared with young penile endothelial cells. In addition, endothelial NOS (NOS3) protein abundance was greater in aged versus young penile endothelial cells, whereas NOS activity and cGMP levels were reduced. Calcium-dependent l-arginine-to-l-citrulline conversion and cGMP formation increased significantly in aged mouse penes in the presence of the arginase inhibitor 2(S)-amino-6-boronohexanoic acid (ABH). However, there was no effect on l-arginine-to-l-citrulline conversion or cGMP accumulation in the endothelium from young mouse penes. To assess the functional role of arginase in the inhibition of NOS pathway responsiveness in the penis, we evaluated the effects of ABH and an adeno-associated virus encoding an antisense sequence to arginase I (AAVanti-arginase) on erectile function in vivo. ABH and AAVanti-arginase enhanced endothelium-dependent erectile responses in the aged mice without altering endothelium-independent responses. Paralleling our in vitro observations, ABH or AAVanti-arginase did not affect vascular responses in the young mice. Inhibition of the arginase pathway improves endothelial function in the aging penile circulation, suggesting that the arginase pathway may be exploited to improve erectile dysfunction associated with aging.  相似文献   

13.
l-Arginine, the natural precursor of NO, is infused in patients to restore endothelial function. Concentrations up to 7.5 mM l-arginine have been measured after parenteral administration. We investigated whether such high concentrations of amino acids influence blood viscosity in vitro. Incubation of whole blood from healthy volunteers with l-arginine, d-arginine, which has no effect on stereospecific NO synthases (NOS), the NOS substrate L-AME, the NOS inhibitor L-NNA, the amino acids l-lysine and l-glutamic acid, and finally NaCl dose-dependently decreased (up to 30% at 10(-2) M) low shear viscosity, which is primarily determined by erythrocyte aggregation. In contrast, the lipophilic NOS inhibitor L-NAME had no effect on low shear viscosity. All molecules failed to influence high shear viscosity, which is primarily determined by red cell deformability, and the erythrocyte shape remained unaltered. We conclude that high concentrations amino acids may decrease blood viscosity at low shear rate independent of NOS activity. This effect may contribute to the improved blood flow after intravascular administration of l-arginine.  相似文献   

14.
Exhaled NO (eNO) is a potential noninvasive biomarker of inflammation in asthma. The significant intersubject variability of eNO within clinically similar patients has contributed to its limited clinical application. Arginase and NO synthase (NOS) utilize the same substrate (l-arginine) and contribute to the fibrotic and inflammatory features of asthma, respectively. Interestingly, TGF-β(2) can increase the expression of arginase, stimulates fibrosis, and is overexpressed in asthma. We hypothesized that TGF-β(2)-enhanced arginase activity would decrease gas phase NO release from lung epithelial cells by limiting l-arginine availability for NOS. Our results show that TGF-β(2) (5 ng/ml) significantly enhances total arginase activity up to two- to threefold in both primary small airway epithelial cells (SAECs) and the A549 cell line. Preincubation with TGF-β(2) prior to cytokine (IL-1β, TNF-α, and IFN-γ, 10 ng/ml each) stimulation decreases gas phase NO release to baseline levels (from 1.66 ± 0.52 to 0.30 ± 0.12 pl·s(-1)·cm(-2) and from 0.27 ± 0.03 pl·s(-1)·cm(-2) to near zero in SAEC and A549 cells, respectively). Addition of arginase inhibitor (N(ω)-hydroxy-nor-l-arginine) or small interfering RNA only partly reverses the reduction. In contrast, Rho-kinase (ROCK) pathway inhibitor (Y-27632) completely recovers the cytokine-induced NO flux in the present of TGF-β(2). Inducible NO synthase (iNOS) mRNA and protein levels change in a similar trend as NO release from the cells. We conclude that TGF-β(2) impacts cytokine-induced NO production in airway epithelial cells by reducing iNOS mRNA and protein levels through a ROCK-dependent pathway.  相似文献   

15.
Nitric oxide (NO) and polyamines play essential roles in many developmental processes and abiotic stress responses in plants. NO and polyamines are metabolized from arginine through NO synthase (NOS) and arginine decarboxylase (ADC), respectively. Function of arginase, another important enzyme involved in arginine metabolism, in abiotic stress remains largely unknown. In the recent study, we have dissected the impact of arginase on arginine metabolism and abiotic stress responses through manipulating AtARGAHs expression. The results suggested that manipulation of arginase expression modulated accumulation of arginine and direct downstream products of arginine catabolism. AtARGAHs knockout lines exhibited increased accumulation of polyamines and NO and enhanced abiotic stress tolerance, while AtARGAHs overexpressing lines displayed the opposite results. Notably, we highlighted that Arabidopsis arginase plays distinctive and dual roles in the crosstalk between polyamines and NO signaling during abiotic stress responses, mediating both arginine metabolism and reactive oxygen species (ROS) accumulation. It is likely that accumulation of both NO and polyamines might activate abiotic stress responses in the plant.  相似文献   

16.
Arginine is a common substrate for both inducible nitric oxide synthase (iNOS) and arginase. The competition between iNOS and arginase for arginine contributes to the outcome of several parasitic and bacterial infections. Salmonella infection in macrophage cell line RAW264.7 induces iNOS. Because the availability of l-arginine is a major determinant for nitric oxide (NO) synthesis, we hypothesize that in the Salmonella infected macrophages NO production may be regulated by arginase. Here we report for the first time that Salmonella up-regulates arginase II but not arginase I isoform in RAW264.7 macrophages. Blocking arginase increases the substrate l-arginine availability to iNOS for production of more nitric oxide and perhaps peroxynitrite molecules in the infected cells allowing better killing of virulent Salmonella in a NO dependent manner. RAW264.7 macrophages treated with iNOS inhibitor Aminoguanidine reverts the attenuation in arginase-blocked condition. Further, the NO block created by Salmonella was removed by increasing concentration of l-arginine. The whole-mice system arginase I, although constitutive, is much more abundant than the inducible arginase II isoform. Inhibition of arginase activity in mice during the course of Salmonella infection reduces the bacterial burden and delays the disease outcome in a NO dependent manner.  相似文献   

17.
The activity of arginase converting arginine into ornithine and urea is of particular interest among many factors regulating NO production in the cells. It is known that by competing with NO-synthase for common substrate, arginase can affect the NO synthesis. In the present work, the properties of arginase from the frog Rana temporaria L. urinary bladder epithelial cells possessing the NO-synthase activity were characterized, and possible contribution of arginase to regulation of NO production by epithelial cells was studied. It has been shown that the enzyme had the temperature optimum in the range of 55-60 degrees C, K(m) for arginine 23 mM, and V(max) about 10 nmol urea/mg protein/min, and its activity was effictively inhibited by (S)-(2-boronoethyl)-L-cysteine (BEC), an inhibitor of arginase, at concentrations from 10(-6) to 10(-4) M. The comparison of arginase activity in various frog tissues revealed the following pattern: liver > kidney > brain > urinary bladder (epithelium) > heart > testis. The arginase activity in the isolated urinary bladder epithelial cells was 3 times higher than that in the intact urinary bladder. To evaluate the role of arginase in the regulation of NO production, epithelial cells were cultivated in the media L-15 or 199 containing different amounts of arginine; the concentration of NO2-, the stable NO metabolite, was determined in the culture fluid after 18-20 h of cells incubation. The vast majority of the produced nitrites are associated with the NOS activity, as L-NAME, the NOS-inhibitor, decreased their accumulation by 77.1% in the L-15 medium and by 80% in 199 medium. BEC (10(-4) M) increased the nitrite production by 18.0 % +/- 2.7 in the L-15 medium and by 24.2 +/- 3.5 in the 199 medium (p < 0.05). The obtained data indicate a relatively high arginase activity in the frog urinary bladder epithelium and its involvement in regulation of NO production by epithelial cells.  相似文献   

18.
Cigarette smoking is an independent risk factor for vasculogenic erectile dysfunction (ED). Nitric oxide (NO) has been demonstrated to be the principal mediator of cavernous smooth muscle relaxation and penile erection. Therefore, we examined whether or not enzyme activities and factors involved in the NO generation pathway are affected in rabbit corpus cavernosum after administration of nicotine- and tar-free cigarette smoke extract (CSE). CSE was prepared by bubbling a stream of cigarette smoke into phosphate-buffered saline. CSE was injected subcutaneously into adult male rabbits once a day for 5 wk. In the CSE group, significantly decreased cyclic GMP production as a marker of NO generation was associated with attenuated overall nitric oxide synthase (NOS) activity, enhanced arginase activity, accumulation of endogenous NOS inhibitors such as monomethylarginine (MMA) and asymmetric dimethylarginine (ADMA), and decreased dimethylarginine dimethylaminohydrolase (DDAH) activity as an metabolizing enzyme of endogenous NOS inhibitors. Neuronal NOS (nNOS) and DDAH I protein expression were decreased without altering endothelial NOS expression, while arginase I expression was upregulated. These results suggest that impaired NO production would result from blunted NOS activity, which is possibly brought about by the downregulation of nNOS protein, accumulation of endogenous NOS inhibitors, and enhanced arginase activity together with upregulation of arginase I protein in cavernous tissue. The impaired DDAH activity due to decreased expression of DDAH I protein would result in an accumulation of endogenous NOS inhibitors with CSE. These alterations may be relevant to induction of the erectile dysfunction following CSE.  相似文献   

19.
Recent data suggest an inverse epidemiological association between intake of flavanol-rich cocoa products and cardiac mortality. Potential beneficial effect of cocoa may be attributed to flavanol-mediated improvement of endothelial function, as well as to enhancement of bioavailability and bioactivity of nitric oxide in vivo. ( ? )-Epicatechin is one bioactive flavanol found in cocoa. This review deals with protective actions of ( ? )-epicatechin on two key processes in atherogenesis, oxidation of LDL and damage to endothelial cell by oxidized LDL (oxLDL), with emphasis on data from this laboratory. ( ? )-Epicatechin not only abrogates or attenuates LDL oxidation but also counteracts deleterious actions of oxLDL on vascular endothelial cells. These protective actions are only partially shared by other vasoprotective agents such as vitamins C and E or aspirin. Thus, ( ? )-epicatechin appears to be a pleiotropic protectant for both LDL and endothelial cells.  相似文献   

20.
Cocoa flavonoids are able to reduce cardiovascular risk by improving endothelial function and decreasing blood pressure (BP). Interest in the biological activities of cocoa is daily increasing. A recent meta-analysis shows flavanol-rich cocoa administration decreases mean systolic (−4.5 mm Hg; p < 0.001) and diastolic (−2.5 mm Hg; p < 0.001) BP. A 3-mm Hg systolic BP reduction has been estimated to decrease the risk of cardiovascular and all-cause mortality. This paper summarizes new findings concerning cocoa effects on cardiovascular health focusing on putative mechanisms of action and nutritional and “pharmacological” viewpoints. Cocoa consumption could play a pivotal role in human health.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号