首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The stability curve - a plot of the Gibbs free energy of unfolding versus temperature - is calculated for bovine erythrocyte carbonic anhydrase in 150 mM sodium phosphate (pH = 7.0) from a combination of reversible differential scanning calorimetry measurements and isothermal guanidine hydrochloride titrations. The enzyme possesses two stable folded conformers with the conformational transition occurring at ~30 degrees C. The methodology yields a stability curve for the complete unfolding of the enzyme below this temperature but only the partial unfolding, to the molten globule state, above it. The transition state thermodynamics for the low- to physiological-temperature conformational change are calculated from slow-scan-rate differential scanning calorimetry measurements where it is found that the free energy barrier for the conversion is 90 kJ/mole and the transition state possesses a substantial unfolding quality. The data therefore suggest that the x-ray structure may differ considerably from the physiological structure and that the two conformers are not readily interconverted.  相似文献   

2.
Bovine adenosine deaminase undergoes a nondenaturational conformational change at 29 degrees C upon heating which is characterized by a large increase in heat capacity. We have determined the transition state thermodynamics of the conformational change using a novel application of differential scanning calorimetry (DSC) which employs very slow scan rates. DSC scans at the conventional, and arbitrary, scan rate of 1 degree C/min show no evidence of the transition. Scan rates from 0.030 to 0.20 degrees C/min reveal the transition indicating it is under kinetic control. The transition temperature T(t) and the transition temperature interval deltaT increase with scan rate. A first order rate constant k1 is calculated at each T(t) from k1 = r(scan)/deltaT, where r(scan) is the scan rate, and an Arrhenius plot is constructed. Standard transition state analysis reveals an activation free energy deltaG(double dagger) of 88.1 kJ/mole and suggests that the conformational change has an unfolding quality that appears to be on the direct path to the physiological-temperature conformer.  相似文献   

3.
At 1.0 atm pressure and in 150 mM sodium phosphate (pH = 7.0), bovine carbonic anhydrase undergoes a nondenaturational conformational change at 30.3 degrees C and an unfolding transition from the physiological conformer to the molten globule state at 67.4 degrees C. The pressure dependences of the temperatures of these transitions have been studied under reversible conditions for the purpose of understanding DeltaH degrees , DeltaS degrees , and DeltaV for each conformational change. Temperatures for the low-temperature to physiological-temperature conformational change T(L-->P) are obtained from physiologically relevant conditions using slow-scan-rate differential scanning calorimetry. Temperatures for the physiological-temperature conformation to molten globule state conversion T(P-->MG) are obtained from differential scanning calorimetry measurements of the apparent transition temperature in the presence of guanidine hydrochloride extrapolated to zero molar denaturant. The use of slow-scan-rate differential scanning calorimetry permits the calculation of the activation volume for the conversion of the low-temperature conformer to the physiological-temperature conformer DeltaV(double dagger)(L-->P). At 1.0 atm pressure, the transition from the low-temperature conformer to the physiological-temperature conformer involves a volume change DeltaV(L-->P) = 15 +/- 2 L/mole, which contrasts with the partial unfolding of the physiological-temperature conformer to the molten globule state (DeltaV(P-->MG) = 26 +/- 9 L/mole). The activation volume for this process DeltaV(double dagger)(L-->P) = 51 +/- 9 L/mole and is consistent with a prior thermodynamic analysis that suggests the conformational transition from the low-temperature conformation to the physiological-temperature conformation possesses a substantial unfolding quality. These results provide further evidence the structure of the enzyme obtained from crystals grown below 30 degrees C should not be regarded as the physiological structure (the normal bovine body temperature is 38.3 degrees C). These results should therefore have implications in any area that seeks to correlate the crystal structure of bovine carbonic anhydrase to physiological function.  相似文献   

4.
The effect of ions on the thermostability and unfolding of Na,K-ATPase from shark salt gland was studied and compared with that of Na,K-ATPase from pig kidney by using differential scanning calorimetry (DSC) and activity assays. In 1 mM histidine at pH 7, the shark enzyme inactivates rapidly at 20 °C, as does the kidney enzyme at 42 °C (but not at 20 °C). Increasing ionic strength by addition of 20 mM histidine, or of 1 mM NaCl or KCl, protects both enzymes against this rapid inactivation. As detected by DSC, the shark enzyme undergoes thermal unfolding at lower temperature (Tm ≈ 45 °C) than does the kidney enzyme (Tm ≈ 55 °C). Both calorimetric endotherms indicate multi-step unfolding, probably associated with different cooperative domains. Whereas the overall heat of unfolding is similar for the kidney enzyme in either 1 mM or 20 mM histidine, components with high mid-point temperatures are lost from the unfolding transition of the shark enzyme in 1 mM histidine, relative to that in 20 mM histidine. This is attributed to partial unfolding of the enzyme due to a high hydrostatic pressure during centrifugation of DSC samples at low ionic strength, which correlates with inactivation measurements. Addition of 10 mM NaCl to shark enzyme in 1 mM histidine protects against inactivation during centrifugation of the DSC sample, but incubation for 1 h at 20 °C prior to addition of NaCl results in loss of components with lower mid-point temperatures within the unfolding transition. Cations at millimolar concentration therefore afford at least two distinct modes of stabilization, likely affecting separate cooperative domains. The different thermal stabilities and denaturation temperatures of the two Na,K-ATPases correlate with the respective physiological temperatures, and may be attributed to the different lipid environments.  相似文献   

5.
Sulfolobus solfataricus 5′-deoxy-5′-melthylthioadenosine phosphorylase II (SsMTAPII), is a hyperthermophilic hexameric protein with two intrasubunit disulfide bonds (C138–C205 and C200–C262) and a CXC motif (C259–C261). To get information on the role played by these covalent links in stability and folding, the conformational stability of SsMTAPII and C262S and C259S/C261S mutants was studied by thermal and guanidinium chloride (GdmCl)-induced unfolding and analyzed by fluorescence spectroscopy, circular dichroism, and SDS-PAGE. No thermal unfolding transition of SsMTAPII can be obtained under nonreducing conditions, while in the presence of the reducing agent Tris-(2-carboxyethyl) phosphine (TCEP), a Tm of 100 °C can be measured demonstrating the involvement of disulfide bridges in enzyme thermostability. Different from the wild-type, C262S and C259S/C261S show complete thermal denaturation curves with sigmoidal transitions centered at 102 °C and 99 °C respectively. Under reducing conditions these values decrease by 4 °C and 8 °C respectively, highlighting the important role exerted by the CXC disulfide on enzyme thermostability. The contribution of disulfide bonds to the conformational stability of SsMTAPII was further assessed by GdmCl-induced unfolding experiments carried out under reducing and nonreducing conditions. Thermal unfolding was found to be reversible if the protein was heated in the presence of TCEP up to 90 °C but irreversible above this temperature because of aggregation. In analogy, only chemical unfolding carried out in the presence of reducing agents resulted in a reversible process suggesting that disulfide bonds play a role in enzyme denaturation. Thermal and chemical unfolding of SsMTAPII occur with dissociation of the native hexameric state into denatured monomers, as indicated by SDS-PAGE.  相似文献   

6.
Differential scanning calorimetry (DSC) and differential scanning fluorimetry (DSF) were used to measure the transition temperatures of four proteins: RNase A, invertase, rituximab, and the NISTmAb (NIST Reference Material, RM 8671). The proteins were combined with several different fluorescent dyes for the DSF measurements. This study compares the results of DSC and DSF measurements of transition temperatures with different types of proteins, dye combinations, and thermal scan rates. As protein unfolding is often influenced by kinetic effects, we measured the transition temperatures of the proteins using DSC over a range of temperature scan rates and compared them to the data obtained from DSF over comparable temperature scan rates. The results when the proteins were combined with Sypro Orange® and bis‐ANS for the DSF measurements had the best correlations with the transition temperatures determined by calorimetry. The scan rate was found to be an important variable when comparing results between DSC and DSF. The van't Hoff enthalpy changes for the transitions were calculated from the DSC data by using a non‐two‐state model and from the DSF values using a two‐state model. The calculated van't Hoff enthalpy changes did not show a good correlation between the two methods. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:677–686, 2017  相似文献   

7.
The effect of copper/zinc metal ion replacement on the folding free energy of wild type (w.t.) and disulfide bridge depleted (C3A/C26A) azurin has been investigated by differential scanning calorimetry (DSC) and fluorescence techniques. The denaturation experiments have shown that, in both cases, the thermal transitions of the zinc derivative of azurins can be depicted in terms of the classical Lumry–Eyring model, NUF, thus resembling the unfolding path of the two copper proteins. The thermally induced transition of Zn azurin, monitored by fluorescence occurs at lower temperature than the DSC scans indicating that a local conformational rearrangement of the Trp microenvironment, takes place before protein denaturation. For Zn C3A/C26A azurin, the two techniques reveal the same transition temperature. Comparison of the thermodynamic data shows that the presence of Zn in the active site stabilises the three-dimensional structure of azurin only when the disulfide bridge is present. Compared to the copper form of the protein, the unfolding temperature of Zn azurin has increased by 4 °C, while the unfolding free energy, ΔG, is 31 kJ/mol higher. Both enthalpic and entropic factors contribute to the observed ΔG increase. However, the copper/zinc replacement has no effect on the unfolding free energy of C3A/C26A azurin. Taking Cu azurin w.t. as the reference state, for both Cu and Zn C3A/C26A azurin the unfolding free energy is decreased by about 28 kJ/mol, indicating that metal substitution is not able to compensate the destabilising effect induced by the disulfide bridge depletion. It is noteworthy that the thermal denaturation of the Zn derivative, which thermodynamically is the most stable form of azurin, is also characterized by the highest value of the activation energy, Ea, as derived from the kinetic stability analysis.  相似文献   

8.
Hemocyanin (Hc) is a type-3 copper protein, containing dioxygen-binding active sites consisting of paired copper atoms. In the present study the thermal unfolding of the Hc from the marine mollusc Rapana thomasiana (RtH) has been investigated by combining differential scanning calorimetry, Fourier transform infrared (FTIR) and UV–vis absorption spectroscopy. Two important stages in the unfolding pathway of the Hc molecule were discerned. A first event, with nonmeasurable heat absorption, occurring around 60 °C, lowers the binding of dioxygen to the type-3 copper groups. This pretransition is reversible and is ascribed to a slight change in the tertiary structure. In a second stage, with midpoint around 80 °C, the protein irreversibly unfolds with a loss of secondary structure and formation of amorphous aggregates. Experiments with the monomeric structural subunits, RtH1 and RtH2, indicated that the heterogeneity in the process of thermal denaturation can be attributed to the presence of multiple 50 kDa functional units with different stability. In accordance, the irreversible unfolding of a purified functional unit (RtH2-e) occurred at a single transition temperature. At slightly alkaline pH (Tris buffer) the C-terminal β-sheet rich domain of the functional unit starts to unfold before the α-helix-rich N-terminal (copper containing) domain, triggering the collapse of the global protein structure. Even around 90 °C some secondary structure is preserved as shown by the FTIR spectra of all investigated samples, confirming the high thermostability of molluscan Hc.  相似文献   

9.
MazG is a homodimeric α-helical protein that belongs to the superfamily of all-α NTP pyrophosphatases. Its function has been connected to the regulation of the toxin-antitoxin module mazEF, implicated in programmed growth arrest/cell death of Escherichia coli cells under conditions of amino acid starvation. The goal of the first detailed biophysical study of a member of the all-α NTP pyrophosphatase superfamily, presented here, is to improve molecular understanding of the unfolding of this type of proteins. Thermal unfolding of MazG monitored by differential scanning calorimetry, circular dichroism spectroscopy, and fluorimetry at neutral pH in the presence of a reducing agent (dithiothreitol) can be successfully described as a reversible four-state transition between a dimeric native state, two dimeric intermediate states, and a monomeric denatured state. The first intermediate state appears to have a structure similar to that of the native state while the final thermally denatured monomeric state is not fully unfolded and contains a significant fraction of residual α-helical structure. In the absence of dithiothreitol, disulfide cross-linking causes misfolding of MazG that appears to be responsible for the formation of multimeric aggregates. MazG is most stable at pH 7-8, while at pH < 6, it exists in a molten-globule-like state. The thermodynamic parameters characterizing each step of MazG denaturation transition obtained by global fitting of the four-state model to differential scanning calorimetry, circular dichroism, and fluorimetry temperature profiles are in agreement with the observed structural characteristics of the MazG conformational states and their assumed functional role.  相似文献   

10.
Thermal denaturation of Escherichia coli maltodextrin glucosidase was studied by differential scanning calorimetry, circular dichroism (230 nm), and UV-absorption measurements (340 nm), which were respectively used to monitor heat absorption, conformational unfolding, and the production of solution turbidity. The denaturation was irreversible, and the thermal transition recorded at scan rates of 0.5–1.5 K/min was significantly scan-rate dependent, indicating that the thermal denaturation was kinetically controlled. The absence of a protein-concentration effect on the thermal transition indicated that the denaturation was rate-limited by a mono-molecular process. From the analysis of the calorimetric thermograms, a one-step irreversible model well represented the thermal denaturation of the protein. The calorimetrically observed thermal transitions showed excellent coincidence with the turbidity transitions monitored by UV-absorption as well as with the unfolding transitions monitored by circular dichroism. The thermal denaturation of the protein was thus rate-limited by conformational unfolding, which was followed by a rapid irreversible formation of aggregates that produced the solution turbidity. It is thus important to note that the absence of the protein-concentration effect on the irreversible thermal denaturation does not necessarily means the absence of protein aggregation itself. The turbidity measurements together with differential scanning calorimetry in the irreversible thermal denaturation of the protein provided a very effective approach for understanding the mechanisms of the irreversible denaturation. The Arrhenius-equation parameters obtained from analysis of the thermal denaturation were compared with those of other proteins that have been reported to show the one-step irreversible thermal denaturation. Maltodextrin glucosidase had sufficiently high kinetic stability with a half-life of 68 days at a physiological temperature (37°C).  相似文献   

11.
We report on the effects of temperature and pressure on the structure, conformation and phase behavior of aqueous dispersions of the model lipid “raft” mixture palmitoyloleoylphosphatidylcholine (POPC)/bovine brain sphingomyelin (SM)/cholesterol (Chol) (1:1:1). We investigated interchain interactions, hydrogen bonding, conformational and structural properties as well as phase transformations of this system using Fourier transform-infrared (FT-IR) spectroscopy, small-angle X-ray scattering (SAXS), differential scanning calorimetry (DSC) coupled with pressure perturbation calorimetry (PPC), and Laurdan fluorescence spectroscopy. The IR spectral parameters in combination with the scattering patterns from the SAXS measurements were used to detect structural and conformational transformations upon changes of pressure up to 7-9 kbar and temperature in the range from 1 to about 80 °C. The generalized polarization function (GP) values, obtained from the Laurdan fluorescence spectroscopy studies also reveal temperature and pressure dependent phase changes. DSC and PPC were used to detect thermodynamic properties accompanying the temperature-dependent phase changes. In combination with literature fluorescence spectroscopy and microscopy data, a tentative p,T stability diagram of the mixture has been established. The data reveal a broad liquid-order/solid-ordered (lo + so) two-phase coexistence region below 8 ± 2 °C at ambient pressure. With increasing temperature, a lo + ld + so three-phase region is formed, which extends up to ∼27 °C, where a liquid-ordered/liquid-disordered (lo + ld) immiscibility region is formed. Finally, above 48 ± 2 °C, the POPC/SM/Chol (1:1:1) mixture becomes completely fluid-like (liquid-disordered, ld). With increasing pressure, all phase transition lines shift to higher temperatures. Notably, the lo + ld (+so) phase coexistence region, mimicking raft-like lateral phase separation in natural membranes, extends over a rather wide temperature range of about 40 °C, and a pressure range, which extends up to about 2 kbar for T = 37 °C. Interestingly, in this pressure range, ceasing of membrane protein function in natural membrane environments has been observed for a variety of systems.  相似文献   

12.
We investigated the effect of temperature on the mechanical unfolding of I27 from human cardiac titin, employing a custom-built temperature control device for single-molecule atomic force microscopy measurement. A sawtooth pattern was observed in the force curves where each force peak reports on the unfolding of an I27 domain. In early unfolding events, we observed a “hump-like” deviation due to the detachment of β-strand A from each I27 domain. The force at which the humps appear was ∼130 pN and showed no temperature dependence, at least in the temperature range of 2°C-30°C. The hump structure was successfully analyzed with a two-state worm-like chain model, and the Gibbs free energy difference of the detachment reaction was estimated to be 11.6 ± 0.58 kcal/mol and found to be temperature independent. By contrast, upon lowering the temperature, the mean unfolding force from the partly unfolded intermediate state was found to markedly increase and the unfolding force distribution to broaden significantly, suggesting that the distance (xu) between the folded and transition states in the energy landscape along the pulling direction is decreased. These results suggest that the local structure of β-strand A are stabilized by topologically simple local hydrogen-bond network and that the temperature does not affect the detachment reaction thermodynamically and kinetically, whereas the interaction between the β-strands A′ and G, which is a critical region for its mechanical stability, is strongly dependent on the temperature.  相似文献   

13.
Thermodynamic parameters describing the conformational stability of the histidine-containing phosphocarrier protein from Streptomyces coelicolor, scHPr, have been determined by steady-state fluorescence measurements of isothermal urea-denaturations, differential scanning calorimetry at different guanidinium hydrochloride concentrations and, independently, by far-UV circular dichroism measurements of isothermal urea-denaturations, and thermal denaturations at fixed urea concentrations. The equilibrium unfolding transitions are described adequately by the two-state model and they validate the linear free-energy extrapolation model, over the large temperature range explored, and the urea concentrations used. At moderate urea concentrations (from 2 to 3 m), scHPr undergoes both high- and low-temperature unfolding. The free-energy stability curves have been obtained for the whole temperature range and values of the thermodynamic parameters governing the heat- and cold-denaturation processes have been obtained. Cold-denaturation of the protein is the result of the combination of an unusually high heat capacity change (1.4 +/- 0.3 kcal.mol(-1).K(-1), at 0 m urea, being the average of the fluorescence, circular dichroism and differential scanning calorimetry measurements) and a fairly low enthalpy change upon unfolding at the midpoint temperature of heat-denaturation (59 +/- 4 kcal.mol(-1), the average of the fluorescence, circular dichroism and differential scanning calorimetry measurements). The changes in enthalpy (m(DeltaH(i) )), entropy (m(DeltaS(i) )) and heat capacity (m(DeltaC(pi) )), which occur upon preferential urea binding to the unfolded state vs. the folded state of the protein, have also been determined. The m(DeltaH(i) ) and the m(DeltaS(i) ) are negative at low temperatures, but as the temperature is increased, m(DeltaH(i) ) makes a less favourable contribution than m(DeltaS(i) ) to the change in free energy upon urea binding. The m(DeltaC(pi) ) is larger than those observed for other proteins; however, its contribution to the global heat capacity change upon unfolding is small.  相似文献   

14.
Chicken liver bile acid-binding protein (L-BABP) binds to anionic lipid membranes by electrostatic interactions and acquires a partly folded state [Nolan, V., Perduca, M., Monaco, H., Maggio, B. and Montich, G. G. (2003) Biochim. Biophys. Acta 1611, 98-106]. We studied the infrared amide I′ band of L-BABP bound to dipalmitoylphosphatidylglycerol (DPPG), dimyristoylphosphatidylglycerol (DMPG) and palmitoyloleoylphosphatidylglycerol (POPG) in the range of 7 to 60 °C. Besides, the thermotrophic behaviour of DPPG and DMPG was studied in the absence and in the presence of bound-protein by differential scanning calorimetry (DSC) and infrared spectra of the stretching vibration of methylene and carbonyl groups. When L-BABP was bound to lipid membranes in the liquid-crystalline state (POPG between 7 and 30 °C) acquired a more unfolded conformation that in membranes in the gel state (DPPG between 7 and 30 °C). Nevertheless, this conformational change of the protein in DMPG did not occur at the temperature of the lipid gel to liquid-crystalline phase transition detected by infrared spectroscopy. Instead, the degree of unfolding in the protein was coincident with a phase transition in DMPG that occurs with heat absorption and without change in the lipid order.  相似文献   

15.
In ectotherms, environmental temperature is the most prominent abiotic factor that modulates life-history traits. We explored the influence of environmental temperature on reproduction in the Madagascar ground gecko (Paroedura picta) by measuring reproductive traits of females at constant temperatures (24, 27, 30 °C). Females of this species lay clutches of one or two eggs within short intervals. For each female, we measured egg mass for the first five clutches. For one clutch, we also measured the energetic content of eggs via bomb calorimetry. Temperature positively influenced the rate of egg production, but females at 30 °C laid smaller eggs than did females at either 24 or 27 °C. Dry mass of eggs scaled allometrically with wet mass, but this relationship was similar among thermal treatments. Females at all temperatures produced eggs with similar energy densities. Females at 24 °C allocated less energy per time unit (≈8 mW) to reproduction than did females from higher temperatures (≈12 mW). However, females at either 24 or 27 °C allocated significantly more energy per egg than did females at 30 °C. Our results demonstrate that a complex thermal sensitivity of reproductive rate can emerge from distinct thermal sensitivities of egg size, egg composition and clutch frequency.  相似文献   

16.
The SH3-HOOK-GUK domains of the postsynaptic scaffolding proteins SAP90/PSD-95 and SAP97 are established targets of synaptic plasticity processes in the brain. A crucial molecular mechanism involved is the transition of this domain to different conformational states. We purified the SH3-HOOK-GUK domain of both proteins to examine variations in protein conformation and stability. As monitored by circular dichroism and differential scanning calorimetry, SAP97 (Tm = 64 °C) is significantly more thermal stable than SAP90/PSD-95 (Tm = 52 °C) and follows a bimodal phase transition. GdmCl-induced equilibrium unfolding of both proteins follows the two-state transitions and thus does not involve the accumulation of stable intermediate state(s). Equilibrium unfolding of SAP97 is highly cooperative from a native state to an unfolded state. In contrast, SAP90/PSD-95 follows a non-cooperative transition from native to unfolded states. A highly cooperative unfolding reaction in case of SAP97 indicates that the protein existed initially as a compact, well-folded structure, while the gradual, non-cooperative melting reaction in case of SAP90/PSD-95 indicates that the protein is in comparison more flexible.  相似文献   

17.
The inverse hexagonal to inverse ribbon phase transition in a mixed phosphatidylcholine-phosphatidylethanolamine system at low hydration is studied using small and wide angle X-ray scattering. It is found that the structural parameters of the inverse hexagonal phase are independent of temperature. By contrast the length of each ribbon of the inverse ribbon phase increases continuously with decreasing temperature over a range of 50 °C. At low temperatures the inverse ribbon phase is observed to have a transition to a gel lamellar phase, with no intermediate fluid lamellar phase. This phase transition is confirmed by differential scanning calorimetry.  相似文献   

18.
The present study utilized a combination of DLS (dynamic light scattering) and DSC (differential scanning calorimetry) to address thermostability of high-affinity folate binding protein (FBP), a transport protein and cellular receptor for the vitamin folate. At pH 7.4 (pI = 7–8) ligand binding increased concentration-dependent self-association of FBP into stable multimers of holo-FBP. DSC of 3.3 μM holo-FBP showed Tm (76 °C) and molar enthalpy (146 kcal M− 1) values increasing to 78 °C and 163 kcal M− 1 at 10 μM holo-FBP, while those of apo-FBP were 55 °C and 105 kcal M− 1. Besides ligand binding, intermolecular forces involved in concentration-dependent multimerization thus contribute to the thermostability of holo-FBP. Hence, thermal unfolding and dissociation of holo-FBP multimers occur simultaneously consistent with a gradual decrease from octameric to monomeric holo-FBP (10 μM) in DLS after a step-wise rise in temperature to 78 °C ≈ Tm. Stable holo-FBP multimers may protect naturally occurring labile folates against decomposition or bacterial utilization. DSC established an interrelationship between diminished folate binding at pH 5, especially in NaCl-free buffers, and low thermostability. Positively charged apo-FBP was almost completely unfolded and aggregated at pH 5 (Tm 38 °C) and holo-FBP, albeit more thermostable, was labile with aggregation tendency. Addition of 0.15 M NaCl increased thermostability of apo-FBP drastically, and even more so that of holo-FBP. Electrostatic forces thus seem to contribute to a diminished thermostability at low pH. Fluorescence spectroscopy after irreversible thermal unfolding of FBP revealed a weak-affinity folate binding.  相似文献   

19.
Fitter J 《Biophysical journal》2003,84(6):3924-3930
Thermal unfolding of proteins at high temperatures is caused by a strong increase of the entropy change which lowers Gibbs free energy change of the unfolding transition (DeltaG(unf) = DeltaH - TDeltaS). The main contributions to entropy are the conformational entropy of the polypeptide chain itself and ordering of water molecules around hydrophobic side chains of the protein. To elucidate the role of conformational entropy upon thermal unfolding in more detail, conformational dynamics in the time regime of picoseconds was investigated with neutron spectroscopy. Confined internal structural fluctuations were analyzed for alpha-amylase in the folded and the unfolded state as a function of temperature. A strong difference in structural fluctuations between the folded and the unfolded state was observed at 30 degrees C, which increased even more with rising temperatures. A simple analytical model was used to quantify the differences of the conformational space explored by the observed protein dynamics for the folded and unfolded state. Conformational entropy changes, calculated on the basis of the applied model, show a significant increase upon heating. In contrast to indirect estimates, which proposed a temperature independent conformational entropy change, the measurements presented here, demonstrated that the conformational entropy change increases with rising temperature and therefore contributes to thermal unfolding.  相似文献   

20.
We describe the guanidinium hydrochloride induced folding kinetics of the four-helix-bundle protein Rop wild-type (wt) under equilibrium conditions at three temperatures. The choice of appropriate denaturant conditions inside the transition range permitted, in combination with equilibrium transition curves, the determination of both unfolding and refolding rate constants. The ratio of the rate constants at zero denaturant concentration provided equilibrium constants and standard free energy changes that are in good agreement with values obtained in previous differential scanning calorimetry studies. The DeltaG0D values for 19, 25 and 40 degrees C calculated from the present kinetic studies are, respectively, 66.8, 70.8 and 57.2 kJ.mol-1. The unfolding reactions are extremely slow under these conditions. Equilibrium was reached only after 18, 12 and 6 days at 19, 25 and 40 degrees C. These results demonstrate that for Rop wt high stability correlates with slow folding kinetics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号