首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Allostery plays a key role in dictating the stoichiometry and thermodynamics of multi‐protein complexes driving a plethora of cellular processes central to health and disease. Herein, using various biophysical tools, we demonstrate that although Sos1 nucleotide exchange factor and Gab1 docking protein recognize two non‐overlapping sites within the Grb2 adaptor, allostery promotes the formation of two distinct pools of Grb2–Sos1 and Grb2–Gab1 binary signaling complexes in concert in lieu of a composite Sos1–Grb2–Gab1 ternary complex. Of particular interest is the observation that the binding of Sos1 to the nSH3 domain within Grb2 sterically blocks the binding of Gab1 to the cSH3 domain and vice versa in a mutually exclusive manner. Importantly, the formation of both the Grb2–Sos1 and Grb2–Gab1 binary complexes is governed by a stoichiometry of 2:1, whereby the respective SH3 domains within Grb2 homodimer bind to Sos1 and Gab1 via multivalent interactions. Collectively, our study sheds new light on the role of allostery in mediating cellular signaling machinery. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

2.
D Cussac  M Frech    P Chardin 《The EMBO journal》1994,13(17):4011-4021
Phosphotyrosine peptide binding to Grb2 induces tryptophan fluorescence changes in the Src homology 2 (SH2) domain. Affinities are in the nanomolar range, the Shc peptide having the highest affinity, followed by peptides mimicking Grb2 binding sites on EGF and HGF receptors, the putative sites on insulin and IGF-1 receptors having much lower affinities. Proline-rich peptide binding to the SH3 domains induces fluorescence changes mainly in the C-terminal SH3. Affinities are in the micromolar range, the highest affinity peptides mimicking the first proline-rich motif of the Sos C-terminus. Additional residues before this PVPPPVPP motif provide a minor contribution to the binding, but the two residues after this motif are important and may contribute to specificity. The affinity of each SH3 for each proline-rich motif is too low to account for the high stability of the Grb2-Sos complex, suggesting that Grb2 recognizes other structural features in the Sos C-terminus. Binding of a phosphotyrosine peptide to the SH2 has no effect on the SH3s. Thus the binding of Grb2 to a receptor or to an associated protein phosphorylated on tyrosines is unlikely to activate the exchange factor activity of Sos through a conformational change transmitted from the SH2 to the SH3 domains.  相似文献   

3.
Numerous signaling proteins use multivalent binding to increase the specificity and affinity of their interactions within the cell. Enhancement arises because the effective binding constant for multivalent binding is larger than the binding constants for each individual interaction. We seek to gain both qualitative and quantitative understanding of the multivalent interactions of an adaptor protein, growth factor receptor bound protein-2 (Grb2), containing two SH3 domains interacting with the nucleotide exchange factor son-of-sevenless 1 (Sos1) containing multiple polyproline motifs separated by flexible unstructured regions. Grb2 mediates the recruitment of Sos1 from the cytosol to the plasma membrane where it activates Ras by inducing the exchange of GDP for GTP. First, using a combination of evolutionary information and binding energy calculations, we predict an additional polyproline motif in Sos1 that binds to the SH3 domains of Grb2. This gives rise to a total of five polyproline motifs in Sos1 that are capable of binding to the two SH3 domains of Grb2. Then, using a hybrid method combining molecular dynamics simulations and polymer models, we estimate the enhancement in local concentration of a polyproline motif on Sos1 near an unbound SH3 domain of Grb2 when its other SH3 domain is bound to a different polyproline motif on Sos1. We show that the local concentration of the Sos1 motifs that a Grb2 SH3 domain experiences is approximately 1000 times greater than the cellular concentration of Sos1. Finally, we calculate the intramolecular equilibrium constants for the crosslinking of Grb2 on Sos1 and use thermodynamic modeling to calculate the stoichiometry. With these equilibrium constants, we are able to predict the distribution of complexes that form at physiological concentrations. We believe this is the first systematic analysis that combines sequence, structure, and thermodynamic analyses to determine the stoichiometry of the complexes that are dominant in the cellular environment.  相似文献   

4.
Allostery has evolved as a form of local communication between interacting protein partners allowing them to quickly sense changes in their immediate vicinity in response to external cues. Herein, using isothermal titration calorimetry (ITC) in conjunction with circular dichroism (CD) and macromolecular modeling (MM), we show that the binding of Grb2 adaptor—a key signaling molecule involved in the activation of Ras GTPase—to its downstream partners Sos1 guanine nucleotide exchange factor and Gab1 docker is under tight allosteric regulation. Specifically, our findings reveal that the binding of one molecule of Sos1 to the nSH3 domain allosterically induces a conformational change within Grb2 such that the loading of a second molecule of Sos1 onto the cSH3 domain is blocked and, in so doing, allows Gab1 access to the cSH3 domain in an exclusively non-competitive manner to generate the Sos1-Grb2-Gab1 ternary signaling complex.  相似文献   

5.
The injection of the Grb2 adapter in Xenopus oocytes promotes G2/M transition without stimulation from a receptor only the first day after the oocytes removal from the ovaries. This cell cycle reinitiation is Ras-dependent and requires the SH2 and SH3 domains of Grb2. The SH2 domain of Grb2 binds the tyrosine phosphorylated lipovitellin1, a homologue of the human apolipoprotein B. The N-SH3 domain of Grb2 is linked to a proline-rich sequence of the C2 domain of PLC-γ1, PLC-γ1 itself is linked, through its SH3 domain, to the C-terminal proline-rich region of Sos. When Grb2–PLC-γ1–Sos is associated, PLC-γ1 is not phosphorylated on Y783 but shows a phospholipase activity. Inhibition of lipovitellin 1 or PLC-γ1 avoids Grb2-induced cell cycle reinitiation. Therefore, the Grb2–lipovitellin 1 association is the starting point of a novel signaling pathway, where PLC-γ1 binds Grb2 and recruits Sos.  相似文献   

6.
Kami K  Takeya R  Sumimoto H  Kohda D 《The EMBO journal》2002,21(16):4268-4276
The basic function of the Src homology 3 (SH3) domain is considered to be binding to proline-rich sequences containing a PxxP motif. Recently, many SH3 domains, including those from Grb2 and Pex13p, were reported to bind sequences lacking a PxxP motif. We report here that the 22 residue peptide lacking a PxxP motif, derived from p47(phox), binds to the C-terminal SH3 domain from p67(phox). We applied the NMR cross-saturation method to locate the interaction sites for the non-PxxP peptides on their cognate SH3 domains from p67(phox), Grb2 and Pex13p. The binding site of the Grb2 SH3 partially overlapped the conventional PxxP-binding site, whereas those of p67(phox) and Pex13p SH3s are located in different surface regions. The non-PxxP peptide from p47(phox) binds to the p67(phox) SH3 more tightly when it extends to the N-terminus to include a typical PxxP motif, which enabled the structure determination of the complex, to reveal that the non-PxxP peptide segment interacted with the p67(phox) SH3 in a compact helix-turn-helix structure (PDB entry 1K4U).  相似文献   

7.
Growth factor receptor-binding protein-2 (Grb2) plays a key role in signal transduction initiated by Bcr/Abl oncoproteins and growth factors, functioning as an adaptor protein through its Src homology 2 and 3 (SH2 and SH3) domains. We found that Grb2 was tyrosine-phosphorylated in cells expressing BCR/ABL and in A431 cells stimulated with epidermal growth factor (EGF). Phosphorylation of Grb2 by Bcr/Abl or EGF receptor reduced its SH3-dependent binding to Sos in vivo, but not its SH2-dependent binding to Bcr/Abl. Tyr209 within the C-terminal SH3 domain of Grb2 was identified as one of the tyrosine phosphorylation sites, and phosphorylation of Tyr209 abolished the binding of the SH3 domain to a proline-rich Sos peptide in vitro. In vivo expression of a Grb2 mutant where Tyr209 was changed to phenylalanine enhanced BCR/ABL-induced ERK activation and fibroblast transformation, and potentiated and prolonged Grb2-mediated activation of Ras, mitogen-activated protein kinase and c-Jun N-terminal kinase in response to EGF stimulation. These results suggest that tyrosine phosphorylation of Grb2 is a novel mechanism of down-regulation of tyrosine kinase signaling.  相似文献   

8.
Quantitative analysis of Grb2/dynamin interaction through plasmon resonance analysis (BIAcore) using Grb2 mutants showed that the high affinity measured between Grb2 and dynamin is essentially mediated by the N-SH3 domain of Grb2. In order to study the interactions between Grb2 and either dynamin or Sos in more detail, Grb2 N-SH3 domains containing different mutations have been analysed. Two mutations were located on the hydrophobic platform binding proline-rich peptides (Y7V and P49L) and one (E40T) located in a region that we had previously shown to be essential for Grb2/dynamin interactions. Through NMR analysis, we have clearly demonstrated that the structure of the P49L mutant is not folded, while the other E40T and Y7V mutants adopt folded structures that are quite similar to that described for the reference domain. Nevertheless, these point mutations were shown to alter the overall stability of these domains by inducing an equilibrium between a folded and an unfolded form. The complex formed between the peptide VPPPVPPRRR, derived from Sos, and the E40T mutant was shown to have the same 3D structure as that described for the wild-type SH3 domain. However, the VPPPVPPRRR peptide adopts a slightly different orientation when it is complexed with the Y7V mutant. Finally, the affinity of the proline-rich peptide GPPPQVPSRPNR, derived from dynamin, for the Grb2 N-SH3 domain was too low to be analyzed by NMR. Thus, the interaction between either Sos or dynamin and the SH3 mutants were tested on a cellular homogenate by means of a far-Western blot analysis. In these conditions, the P49L mutant was shown to be devoid of affinity for Sos as well as for dynamin. The Y7V SH3 mutant displayed a decrease of affinity for both Sos and dynamin, while the E40T mutant exhibited a decrease of affinity only for dynamin. These results support the existence of two binding sites between dynamin and the Grb2 N-SH3 domain.  相似文献   

9.
The two SH3 domains and one SH2 domain containing adaptor protein Grb2 is an essential element of the Ras signaling pathway in multiple systems. The SH2 domain of Grb2 recognizes and interacts with phosphotyrosine residues on activated tyrosine kinases, whereas the SH3 domains bind to several proline-rich domain-containing proteins such as Sos1. To define the difference in Grb2-associated proteins in hepatocarcinoma cells, we performed coprecipitation analysis using recombinant GST-Grb2 fusion proteins and found that several protein components (p170, p125, p100, and p80) differently associated with GST-Grb2 proteins in human Chang liver and hepatocarcinoma HepG2 cells. Sos1 and p80 proteins dominantly bind to Grb2 fusion proteins in Chang liver, whereas p100 remarkably associate with Grb2 in HepG2 cells. Also GST-Grb2 SH2 proteins exclusively bound to the p46(Shc), p52(Shc), and p66(Shc) are important adaptors of the Ras pathway in HepG2 cells. The p100 protein has been identified as dynamin II. We observed that the N-SH3 and C-SH3 domains of Grb2 fusion proteins coprecipitated with dynamin II besides Sos1. These results suggest that dynamin II may be a functional molecule involved in Grb2-mediated signaling pathway on Ras activation for tumor progression and differentiation of hepatocarcinoma cells.  相似文献   

10.
The adaptor protein Tks5/FISH (tyrosine kinase substrate 5/five SH3 domains, hereafter termed Tks5) is a crucial component of a protein network that controls the invasiveness of cancer cells and progression of Alzheimer's disease. Tks5 consists of an amino-terminal PX domain that is followed by five SH3 domains (SH3A-E), and two different splice variants are expressed. We identified son of sevenless-1 (Sos1) as a novel binding partner of Tks5 and found colocalization of Tks5 with Sos1 in human epithelial lung carcinoma (A549) cells and in podosomes of Src-transformed NIH 3T3 cells. We observe synergistic binding of SH3A and SH3B to Sos1 when peptide arrays are used, indicating that the tandem SH3A and SH3B domains of Tks5 can potentially bind in a superSH3 binding mode, as was described for the homologous protein p47phox. These results are further corroborated by pull-down assays and isothermal titration calorimetry showing that both intact SH3 domains are required for efficient binding to the entire proline-rich domain of Sos1. The presence of a basic insertion between the SH3A and SH3B domains in the long splice variant of Tks5 decreases the affinity to Sos1 isoforms about 10-fold as determined by analytical ultracentrifugation. Furthermore, it leads to an alteration in the recognition of binding motifs for the interaction with Sos1: While the insertion abrogates the interaction with the majority of peptides derived from the proline-rich domains of Sos1 and dynamin that are recognized by the short splice isoform, it enables binding to a different set of peptides including a sequence comprising the splice insertion in the long isoform of Sos1 (Sos1_2). In the absence of the basic insertion, Tks5 was found to bind a range of Sos1 and dynamin peptides including conventional proline-rich motifs and atypical recognition sequences. Hereby, the tandem SH3 domains in Tks5 employ two distinct types of binding modes: One class of peptides is recognized by single SH3 domains, whereas a second class of peptides requires the presence of both domains to bind synergistically. We conclude that the tandem SH3A and SH3B domains of Tks5 constitute a versatile module for the implementation of isoform-specific protein-protein interactions.  相似文献   

11.
Guanine nucleotide exchange factors (GEFs) are responsible for coupling cell surface receptors to Ras protein activation. Here we describe the characterization of a novel family of differentially expressed GEFs, identified by database sequence homology searching. These molecules share the core catalytic domain of other Ras family GEFs but lack the catalytic non-conserved (conserved non-catalytic/Ras exchange motif/structurally conserved region 0) domain that is believed to contribute to Sos1 integrity. In vitro binding and in vivo nucleotide exchange assays indicate that these GEFs specifically catalyze the GTP loading of the Ral GTPase when overexpressed in 293T cells. A central proline-rich motif associated with the Src homology (SH)2/SH3-containing adapter proteins Grb2 and Nck in vivo, whereas a pleckstrin homology (PH) domain was located at the GEF C terminus. We refer to these GEFs as RalGPS 1A, 1B, and 2 (Ral GEFs with PH domain and SH3 binding motif). The PH domain was required for in vivo GEF activity and could be functionally replaced by the Ki-Ras C terminus, suggesting a role in membrane targeting. In the absence of the PH domain RalGPS 1B cooperated with Grb2 to promote Ral activation, indicating that SH3 domain interaction also contributes to RalGPS regulation. In contrast to the Ral guanine nucleotide dissociation stimulator family of Ral GEFs, the RalGPS proteins do not possess a Ras-GTP-binding domain, suggesting that they are activated in a Ras-independent manner.  相似文献   

12.
The Src homology (SH) 3 domain has been shown recently to bind peptide sequences that lack the canonical PXXP motif. The diverse specificity in ligand recognition for a group of 15 SH3 domains has now been investigated using arrays of peptides derived from the proline-rich region of the SH2 domain-containing leukocyte protein of 76 kDa (SLP-76). A screen of the peptide arrays using individual or mixed SH3 domains has allowed the identification of a number of candidate SH3-binding peptides. Although some peptides contain the conventional PXXP motif, most are devoid of such a motif and are instead enriched in basic residues. Fluorescent polarization measurements using soluble peptides and purified SH3 domains demonstrated that several SH3 domains, including those from growth factor receptor-bound protein 2 (Grb2), NCK, and phospholipase C (PLC)-gamma1, bound with moderate affinities (10-100 microm) to a group of non-conventional peptides. Of particular interest, the PLC-gamma1 SH3 domain was found to associate with SLP-76 through at least three distinct sites, two of which bore a novel KKPP motif and the other contained the classic PXXP sequence. Intriguingly mutation of critical residues for the three sites not only affected binding of SLP-76 to the PLC-gamma1 SH3 domain but also to the Grb2 C-terminal SH3 domain, indicating that the binding sites in SLP-76 for the two SH3 domains are overlapped. Our studies suggest that the SH3 domain is an inherently promiscuous interaction module capable of binding to peptides that may or may not contain a PXXP motif. Furthermore the identification of numerous non-conventional SH3-binding peptides in SLP-76 implies that the global ligand pool for SH3 domains in a mammalian proteome may be significantly greater than previously acknowledged.  相似文献   

13.
14.
15.
A novel proteomic screen for peptide-protein interactions   总被引:7,自引:0,他引:7  
Regulated interactions between short, unstructured amino acid sequences and modular protein domains are central to cell signaling. Here we use synthetic peptides in "active" (e.g. phosphorylated) and "control" (e.g. non-phosphorylated) forms as baits in affinity pull-down experiments to determine such interactions by quantitative proteomics. Stable isotope labeling by amino acids in cell culture distinguishes specific binders directly by the isotope ratios determined by mass spectrometry (Blagoev, B., Kratchmarova, I., Ong, S.-E., Nielsen, M., Foster, L. J., and Mann, M. (2003) Nat. Biotechnol. 21, 315-318). A tyrosine-phosphorylated peptide of the epidermal growth factor receptor specifically retrieved the Src homology domain (SH) 2- and SH3 domain-containing adapter protein Grb2. A proline-rich sequence of Son of Sevenless also specifically bound Grb2, demonstrating that the screen maintains specificity with low affinity interactions. The proline-rich Sos peptide retrieved only SH3 domain containing proteins as specific binding partners. Two of these, Pacsin 3 and Sorting Nexin 9, were confirmed by immunoprecipitation. Our data are consistent with a change in the role of Sos from Ras-dependent signaling to actin remodeling/endocytic signaling events by a proline-SH3 domain switch.  相似文献   

16.
The amphiphysins are brain-enriched proteins, implicated in clathrin-mediated endocytosis, that interact with dynamin through their SH3 domains. To elucidate the nature of this interaction, we have solved the crystal structure of the amphiphysin-2 (Amph2) SH3 domain to 2.2 A. The structure possesses several notable features, including an extensive patch of negative electrostatic potential covering a large portion of its dynamin binding site. This patch accounts for the specific requirement of amphiphysin for two arginines in the proline-rich binding motif to which it binds on dynamin. We demonstrate that the interaction of dynamin with amphiphysin SH3 domains, unlike that with SH3 domains of Grb2 or spectrin, prevents dynamin self-assembly into rings. Deletion of a unique insert in the n-Src loop of Amph2 SH3, a loop adjacent to the dynamin binding site, significantly reduces this effect. Conversely, replacing the n-Src loop of the N-terminal SH3 domain of Grb2 with that of Amph2 causes it to favour dynamin ring disassembly. Transferrin uptake assays show that shortening the n-Src loop of Amph2 SH3 reduces the ability of this domain to inhibit endocytosis in vivo. Our data suggest that amphiphysin SH3 domains are important regulators of the multimerization cycle of dynamin in endocytosis.  相似文献   

17.
The phosphoinositide 3-kinase (PI3K) is frequently activated in human cancer cells due to gain of function mutations in the catalytic (p110) and the regulatory (p85) subunits. The regulatory subunit consists of an SH3 domain and two SH2 domains. An oncogenic form of p85α named p65 lacking the c-terminal SH2 domain (cSH2) has been cloned from an irradiation-induced murine thymic lymphoma and transgenic mice expressing p65 in T lymphocytes develop a lymphoproliferative disorder. We have recently detected a c-terminal truncated form of p85α named p76α in a human lymphoma cell line lacking most of the cSH2 domain due to a frame shift mutation. Here, we report that the deletion of the cSH2 domain enhances the activating effects of the n-terminal SH2 domain (nSH2) mutants K379E and R340E on the PI3K/Akt pathway and micro tumor formation in a focus assay. Further analysis revealed that this transforming effect is mediated by activation of the catalytic PI3K isoform p110α and downstream signaling through mTOR. Our data further support a mechanistic model in which mutations of the cSH2 domain of p85α can abrogate its negative regulatory function on PI3K activity via the nSH2 domain of p85α.  相似文献   

18.
M T Bedford  D C Chan    P Leder 《The EMBO journal》1997,16(9):2376-2383
WW domains are conserved protein motifs of 38-40 amino acids found in a broad spectrum of proteins. They mediate protein-protein interactions by binding proline-rich modules in ligands. A 10 amino acid proline-rich portion of the morphogenic protein, formin, is bound in vitro by both the WW domain of the formin-binding protein 11 (FBP11) and the SH3 domain of Abl. To explore whether the FBP11 WW domain and Abl SH3 domain bind to similar ligands, we screened a mouse limb bud expression library for putative ligands of the FBP11 WW domain. In so doing, we identified eight ligands (WBP3 through WBP10), each of which contains a proline-rich region or regions. Peptide sequence comparisons of the ligands revealed a conserved motif of 10 amino acids that acts as a modular sequence binding the FBP11 WW domain, but not the WW domain of the putative signal transducing factor, hYAP65. Interestingly, the consensus ligand for the FBP11 WW domain contains residues that are also required for binding by the Abl SH3 domain. These findings support the notion that the FBP11 WW domain and the Abl SH3 domain can compete for the same proline-rich ligands and suggest that at least two subclasses of WW domains exist, namely those that bind a PPLP motif, and those that bind a PPXY motif.  相似文献   

19.
Although the growth factor receptor binder 2 (Grb2)-Grb2-associated binder (Gab)1 macromolecular complex mediates a multitude of cellular signaling cascades, the molecular basis of its assembly has hitherto remained largely elusive. Herein, using an array of biophysical techniques, we show that, whereas Grb2 exists in a monomer-dimer equilibrium, the proline-rich (PR) domain of Gab1 is a monomer in solution. Of particular interest is the observation that although the PR domain appears to be structurally disordered, it nonetheless adopts a more or less compact conformation reminiscent of natively folded globular proteins. Importantly, the structurally flexible conformation of the PR domain appears to facilitate the binding of Gab1 to Grb2 with a 1:2 stoichiometry. More specifically, the formation of the Grb2-Gab1 signaling complex is driven via a bivalent interaction through the binding of the C-terminal homology 3 (cSH3) domain within each monomer of Grb2 homodimer to two distinct RXXK motifs, herein designated G1 and G2, located within the PR domain of Gab1. Strikingly, in spite of the key role of bivalency in driving this macromolecular assembly, the cSH3 domains bind to the G1 and G2 motifs in an independent manner with zero cooperativity. Taken together, our findings shed new light on the physicochemical forces driving the assembly of a key macromolecular signaling complex that is relevant to cellular health and disease.  相似文献   

20.
Bousquet JA  Garbay C  Roques BP  Mély Y 《Biochemistry》2000,39(26):7722-7735
SH3 (src homology domain 3) domains are small protein modules that interact with proline-rich peptides. The structure of the N-terminal SH3 domain from growth factor receptor-binding protein 2 (Grb2), an adapter protein in the intracellular signaling pathway to Ras, was investigated by circular dichroic (CD) spectroscopy. The compact native beta-barrel conformation, previously elucidated by NMR spectroscopy, was largely predominant at pH = 4.8, in the absence of salt. From the structural changes induced by varying pH, ionic strength, temperature, or hydrophobicity of the environment, evidence for the existence of distinct nonnative conformations was obtained in the far- and near-UV domains. Along the free energy scale, these appear to distribute into two conformational ensembles, depending on the extent of structural and thermodynamic differences compared to the native conformation. The first ensemble consists of non-native conformations with a nativelike secondary structure, and the second is composed of partially unfolded conformations having short alpha-helical fragments or turnlike motifs in their nonnative secondary structure. Most of the observed nonnative conformations exist in mild or nondenaturing conditions. They probably have distinct compactness of their inner structure, depending on the strength of nonlocal interactions, but only the native all-beta conformation possesses a condensed protein exterior, appropriate for the binding to the VPPPVPPRRR decapeptide from Sos. Upon binding, the native conformation undergoes a local tertiary structure change in a hydrophobic pocket at the binding site. This is accompanied by the PP-II helix folding of the proline-rich peptide. Interestingly, in the near-UV domain, a significant change in the spectral contribution of an aromatic exciton was observed, thus allowing quantitative tracking of the binding process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号