首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The Ca2+-sensitive regulatory switch of cardiac muscle is a paradigmatic example of protein assemblies that communicate ligand binding through allosteric change. The switch is a dimeric complex of troponin C (TnC), an allosteric sensor for Ca2+, and troponin I (TnI), an allosteric reporter. Time-resolved equilibrium Förster resonance energy transfer (FRET) measurements suggest that the switch activates in two steps: a TnI-independent Ca2+-priming step followed by TnI-dependent opening. To resolve the mechanistic role of TnI in activation we performed stopped-flow FRET measurements of activation after rapid addition of a lacking component (Ca2+ or TnI) and deactivation after rapid chelation of Ca2+. Time-resolved measurements, stopped-flow measurements, and Ca2+-titration measurements were globally analyzed in terms of a new quantitative dynamic model of TnC-TnI allostery. The analysis provided a mesoscopic parameterization of distance changes, free energy changes, and transition rates among the accessible coarse-grained states of the system. The results reveal that 1), the Ca2+-induced priming step, which precedes opening, is the rate-limiting step in activation; 2), closing is the rate-limiting step in de-activation; 3), TnI induces opening; 4), there is an incompletely deactivated population when regulatory Ca2+ is not bound, which generates an accessory pathway of activation; and 5), there is incomplete activation by Ca2+—when regulatory Ca2+ is bound, a 3:2 mixture of dynamically interconverting open (active) and primed-closed (partially active) conformers is observed (15°C). Temperature-dependent stopped-flow FRET experiments provide a near complete thermokinetic parameterization of opening: the enthalpy change (ΔH = −33.4 kJ/mol), entropy change (ΔS = −0.110 kJ/mol/K), heat capacity change (ΔCp = −7.6 kJ/mol/K), the enthalpy of activation (δ = 10.6 kJ/mol) and the effective barrier crossing attempt frequency (νadj = 1.8 × 104 s−1).  相似文献   

2.
In biological systems, enzymes often use metal ions, especially Mg2+, to catalyze phosphodiesterolysis, and model aqueous studies represent an important avenue of examining the contributions of these ions to catalysis. We have examined Mg2+ and Ca2+ catalyzed hydrolysis of the model phosphodiester thymidine-5′-p-nitrophenyl phosphate (T5PNP). At 25 °C, we find that, despite their different Lewis acidities, these ions have similar catalytic ability with second-order rate constants for attack of T5PNP by hydroxide (kOH) of 4.1 × 10−4 M−1s−1 and 3.7 × 10−4 M−1s−1 in the presence of 0.30 M Mg2+ and Ca2+, respectively, compared to 8.3 × 10−7 M−1s−1 in the absence of divalent metal ion. Examining the dependence of kOH on [M2+] at 50 °C indicates different kinetic mechanisms with Mg2+ utilizing a single ion mechanism and Ca2+ operating by parallel single and double ion mechanisms. Association of the metal ion(s) occurs prior to nucleophilic attack by hydroxide. Comparing the kOH values reveals a single Mg2+ catalyzes the reaction by 1800-fold whereas a single Ca2+ ion catalyzes the reaction by only 90-fold. The second Ca2+ provides an additional 10-fold catalysis, significantly reducing the catalytic disparity between Mg2+ and Ca2+.  相似文献   

3.
Escherichia coli RecBCD is a highly processive DNA helicase involved in double-strand break repair and recombination that possesses two helicase/translocase subunits with opposite translocation directionality (RecB (3′ to 5′) and RecD (5′ to 3′)). RecBCD has been shown to melt out ∼ 5-6 bp upon binding to a blunt-ended duplex DNA in a Mg2+-dependent, but ATP-independent reaction. Here, we examine the binding of E. coli RecBC helicase (minus RecD), also a processive helicase, to duplex DNA ends in the presence and in the absence of Mg2+ in order to determine if RecBC can also melt a duplex DNA end in the absence of ATP. Equilibrium binding of RecBC to DNA substrates with ends possessing pre-formed 3′ and/or 5′ single-stranded (ss)-(dT)n flanking regions (tails) (n ranging from zero to 20 nt) was examined by competition with a fluorescently labeled reference DNA and by isothermal titration calorimetry. The presence of Mg2+ enhances the affinity of RecBC for DNA ends possessing 3′ or 5′-(dT)n ssDNA tails with n < 6 nt, with the relative enhancement decreasing as n increases from zero to six nt. No effect of Mg2+ was observed for either the binding constant or the enthalpy of binding (ΔHobs) for RecBC binding to DNA with ssDNA tail lengths, n ≥ 6 nucleotides. Upon RecBC binding to a blunt duplex DNA end in the presence of Mg2+, at least 4 bp at the duplex end become accessible to KMnO4 attack, consistent with melting of the duplex end. Since Mg2+ has no effect on the affinity or binding enthalpy of RecBC for a DNA end that is fully pre-melted, this suggests that the role of Mg2+ is to overcome a kinetic barrier to melting of the DNA by RecBC and presumably also by RecBCD. These data also provide an accurate estimate (ΔHobs = 8 ± 1 kcal/mol) for the average enthalpy change associated with the melting of a DNA base-pair by RecBC.  相似文献   

4.
The kinetics of Ca2+-dependent conformational changes of human cardiac troponin (cTn) were studied on isolated cTn and within the sarcomeric environment of myofibrils. Human cTnC was selectively labeled on cysteine 84 with N-((2-(iodoacetoxy)ethyl)-N-methyl)amino-7-nitrobenz-2-oxa-1,3-diazole and reconstituted with cTnI and cTnT to the cTn complex, which was incorporated into guinea pig cardiac myofibrils. These exchanged myofibrils, or the isolated cTn, were rapidly mixed in a stopped-flow apparatus with different [Ca2+] or the Ca2+-buffer 1,2-Bis(2-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid to determine the kinetics of the switch-on or switch-off, respectively, of cTn. Activation of myofibrils with high [Ca2+] (pCa 4.6) induced a biphasic fluorescence increase with rate constants of >2000 s−1 and ∼330 s−1, respectively. At low [Ca2+] (pCa 6.6), the slower rate was reduced to ∼25 s−1, but was still ∼50-fold higher than the rate constant of Ca2+-induced myofibrillar force development measured in a mechanical setup. Decreasing [Ca2+] from pCa 5.0-7.9 induced a fluorescence decay with a rate constant of 39 s−1, which was approximately fivefold faster than force relaxation. Modeling the data indicates two sequentially coupled conformational changes of cTnC in myofibrils: 1), rapid Ca2+-binding (kB ≈ 120 μM−1 s−1) and dissociation (kD ≈ 550 s−1); and 2), slower switch-on (kon = 390s−1) and switch-off (koff = 36s−1) kinetics. At high [Ca2+], ∼90% of cTnC is switched on. Both switch-on and switch-off kinetics of incorporated cTn were around fourfold faster than those of isolated cTn. In conclusion, the switch kinetics of cTn are sensitively changed by its structural integration in the sarcomere and directly rate-limit neither cardiac myofibrillar contraction nor relaxation.  相似文献   

5.
Marine brachyuran and anomuran crustaceans are completely absent from the extremely cold (− 1.8 °C) Antarctic continental shelf, but caridean shrimps are abundant. This has at least partly been attributed to low capacities for magnesium excretion in brachyuran and anomuran lithodid crabs ([Mg2+]HL = 20-50 mmol L− 1) compared to caridean shrimp species ([Mg2+]HL = 5-12 mmol L− 1). Magnesium has an anaesthetizing effect and reduces cold tolerance and activity of adult brachyuran crabs. We investigated whether the capacity for magnesium regulation is a factor that influences temperature-dependent activity of early ontogenetic stages of the Sub-Antarctic lithodid crab Paralomis granulosa. Ion composition (Na+, Mg2+, Ca2+, Cl, SO42−) was measured in haemolymph withdrawn from larval stages, the first and second juvenile instars (crabs I and II) and adult males and females. Magnesium excretion improved during ontogeny, but haemolymph sulphate concentration was lowest in the zoeal stages. Neither haemolymph magnesium concentrations nor Ca2+:Mg2+ ratios paralleled activity levels of the life stages. Long-term (3 week) cold exposure of crab I to 1 °C caused a significant rise of haemolymph sulphate concentration and a decrease in magnesium and calcium concentrations compared to control temperature (9 °C). Spontaneous swimming activity of the zoeal stages was determined at 1, 4 and 9 °C in natural sea water (NSW, [Mg2+] = 51 mmol L− 1) and in sea water enriched with magnesium (NSW + Mg2+, [Mg2+] = 97 mmol L− 1). It declined significantly with temperature but only insignificantly with increased magnesium concentration. Spontaneous velocities were low, reflecting the demersal life style of the zoeae. Heart rate, scaphognathite beat rate and forced swimming activity (maxilliped beat rate, zoea I) or antennule beat rate (crab I) were investigated in response to acute temperature change (9, 6, 3, 1, − 1 °C) in NSW or NSW + Mg2+. High magnesium concentration reduced heart rates in both stages. The temperature-frequency curve of the maxilliped beat (maximum: 9.6 beats s− 1 at 6.6 °C in NSW) of zoea I was depressed and shifted towards warmer temperatures by 2 °C in NSW + Mg2+, but antennule beat rate of crab I was not affected. Magnesium may therefore influence cold tolerance of highly active larvae, but it remains questionable whether the slow-moving lithodid crabs with demersal larvae would benefit from an enhanced magnesium excretion in nature.  相似文献   

6.
7.
Neuronal calcium sensor-1 (NCS-1) is a major modulator of Ca2+ signaling with a known role in neurotransmitter release. NCS-1 has one cryptic (EF1) and three functional (EF2, EF3, and EF4) EF-hand motifs. However, it is not known which are the regulatory (Ca2+-specific) and structural (Ca2+- or Mg2+-binding) EF-hand motifs. To understand the specialized functions of NCS-1, identification of the ionic discrimination of the EF-hand sites is important. In this work, we determined the specificity of Ca2+ binding using NMR and EF-hand mutants. Ca2+ titration, as monitored by [15N,1H] heteronuclear single quantum coherence, suggests that Ca2+ binds to the EF2 and EF3 almost simultaneously, followed by EF4. Our NMR data suggest that Mg2+ binds to EF2 and EF3, thereby classifying them as structural sites, whereas EF4 is a Ca2+-specific or regulatory site. This was further corroborated using an EF2/EF3-disabled mutant, which binds only Ca2+ and not Mg2+. Ca2+ binding induces conformational rearrangements in the protein by reversing Mg2+-induced changes in Trp fluorescence and surface hydrophobicity. In a larger physiological perspective, exchanging or replacing Mg2+ with Ca2+ reduces the Ca2+-binding affinity of NCS-1 from 90 nM to 440 nM, which would be advantageous to the molecule by facilitating reversibility to the Ca2+-free state. Although the equilibrium unfolding transitions of apo-NCS-1 and Mg2+-bound NCS-1 are similar, the early unfolding transitions of Ca2+-bound NCS-1 are partially influenced in the presence of Mg2+. This study demonstrates the importance of Mg2+ as a modulator of calcium homeostasis and active-state behavior of NCS-1.  相似文献   

8.
The activation energy of mitochondrial Ca2+ transport has been studied in various conditions by Arrhenius plots in the temperature range 6–20°C. In the presence of Mg2+ the activation energy is decreased to 18 kJ/mole from that of 40 kJ/mole found in a sucrose medium. In the presence of the polyamine spermine the activation energy is practically 0 kJ/mole. A lanthanide Eu3+, which is a potent inhibitor of Ca2+ transport, has no significant effect on the activation energy. In a KCl medium the activation energy is increased to 70 kJ/mole. When both K+ and Mg+ are present the activation energy is nonlinear between 11 and 18°C. In the presence of K+ and spermine it is about 0 kJ/mole between 6 and 13°C and at higher temperatures 68 kJ/mole. Neither Mg2+ nor spermine affect the slope of the Arrhenius plot for state 4 respiration. Spermine decreases slightly the activation energy of Ca2+-stimulated respiration. Spermine also decreases the activation energy of valinomycin- or gramicidin-induced safranine uptake by liposomes from 68 to almost 0 kJ/mole between 17 and 30°C. The results indicate that Ca2+ binding to the polar head groups of the phospholipids at the membrane surface is the rate-limiting step of mitochondrial Ca2+ transport, because agents that inhibit Ca2+ binding to these sites (Mg2+, spermine, K+) have the most marked effect, whereas Eu3+, which, because of the small concentration used, ought to interact mainly with the mitochondrial Ca2+ transport system, has no significant effect on the temperature sensitivity of mitochondrial Ca2+ transport.  相似文献   

9.
BACE1 is a novel type I transmembrane aspartyl protease that has been implicated in the pathogenesis of Alzheimer's disease. Cleavage of the amyloid precursor protein by the β-secretase, BACE1, is the first step in the production of the Aβ peptide and is a prime target for therapeutic intervention. Using circular dichroism, we reveal that the secondary structure of BACE1 in a membrane environment is significantly different from what was determined from the previously resolved crystal structure, and, we provide the first evidence that show differences in stability between the active (pH 4.8) and inactive (pH 7.4) forms of BACE1. In this study we have also examined Ca2+ binding to BACE1, the effect of this binding on the secondary and tertiary structural characteristics of BACE1, and the influence of this binding on the specific activity of the purified protein. Circular dichroism and endogenous tryptophan fluorescence measurements demonstrated that the secondary and tertiary structures, respectively, are sensitive to increasing concentrations of Ca2+. Isothermal titration calorimetry was then used to characterize the Ca2+-BACE1 interaction in more detail. Our results suggest that there is a high affinity of binding (kd = 2.0 × μM) between Ca2+ and BACE1 and that the binding process was exothermic (ΔH = − 3.5 kcal/mol). We also could demonstrate that low concentrations of Ca2+ (μM range) significantly increased the proteolytic activity of BACE1. Collectively, these results identify a direct interaction between BACE1 and Ca2+ and suggest that under physiological conditions, the function(s) of BACE1 must also be influenced by Ca2+.  相似文献   

10.
BackgroundMag-Fluo-4 is increasingly employed for studying Ca2+ signaling in skeletal muscle; however, the lack of information on the Ca2+-Mag-Fluo-4 reaction limits its wider usage.MethodsFluorescence and isothermal titration calorimetry (ITC) experiments were performed to determine the binding stoichiometry (n) and thermodynamics (enthalpy (ΔH) and entropy (ΔS) changes), as well as the in vitro and in situ Kd of the Ca2+-Mag-Fluo-4 reaction. Rate constants (kon, koff), fluorescence maximum (Fmax), minimum (Fmin), and the dye compartmentalization were also estimated. Experiments in cells used enzymatically dissociated flexor digitorum brevis fibres of C57BL6, adult mice, loaded at room temperature for 8 min, with 6 μM Mag-Fluo-4, AM, and permeabilized with saponin or ionomycin. All measurements were done at 20 °C.ResultsThe in vitro fluorescence assays showed a binding stoichiometry of 0.5 for the Ca2+/Mag-Fluo-4 (n = 5) reaction. ITC results (n = 3) provided ΔH and ΔS values of 2.3 (0.7) kJ/mol and 97.8 (5.9) J/mol.K, respectively. The in situ Kd was 1.652 × 105μM2(n = 58 fibres, R2 = 0.99). With an Fmax of 150.9 (8.8) A.U. (n = 8), Fmin of 0.14 (0.1) A.U. (n = 10), and ΔF of Ca2+ transients of 8.4 (2.5) A.U. (n = 10), the sarcoplasmic [Ca2+]peak reached 22.5 (7.8) μM. Compartmentalized dye amounted to only 1.1 (0.7)% (n = 10).CONCLUSIONS: Two Mag-Fluo-4 molecules coalesce around one Ca2+ ion, in an entropy-driven, very low in situ affinity reaction, making it suitable to reliably track the kinetics of rapid muscle Ca2+ transients.General significanceOur results may be relevant to the quantitative study of Ca2+ kinetics in many other cell types.  相似文献   

11.
The interaction of calmodulin (CaM) with the receptor for retinol uptake, STRA6, involves an α-helix termed BP2 that is located on the intracellular side of this homodimeric transporter (Chen et al., 2016 [1]). In the absence of Ca2+, NMR data showed that a peptide derived from BP2 bound to the C-terminal lobe (C-lobe) of Mg2+-bound CaM (MgCaM). Upon titration of Ca2+ into MgCaM-BP2, NMR chemical shift perturbations (CSPs) were observed for residues in the C-lobe, including those in the EF-hand Ca2+-binding domains, EF3 and EF4 (CaKD = 60 ± 7 nM). As higher concentrations of free Ca2+ were achieved, CSPs occurred for residues in the N-terminal lobe (N-lobe) including those in EF1 and EF2 (CaKD = 1000 ± 160 nM). Thermodynamic and kinetic Ca2+ binding studies showed that BP2 addition increased the Ca2+-binding affinity of CaM and slowed its Ca2+ dissociation rates (koff) in both the C- and N-lobe EF-hand domains, respectively. These data are consistent with BP2 binding to the C-lobe of CaM at low free Ca2+ concentrations (<100 nM) like those found at resting intracellular levels. As free Ca2+ levels approach 1000 nM, which is typical inside a cell upon an intracellular Ca2+-signaling event, BP2 is shown here to interact with both the N- and C-lobes of Ca2+-loaded CaM (CaCaM-BP2). Because this structural rearrangement observed for the CaCaM-BP2 complex occurs as intracellular free Ca2+ concentrations approach those typical of a Ca2+-signaling event (CaKD = 1000 ± 160 nM), this conformational change could be relevant to vitamin A transport by full-length CaCaM-STRA6.  相似文献   

12.
Thioredoxins are small, ubiquitous redox enzymes that reduce protein disulfide bonds by using a pair of cysteine residues present in a strictly conserved WCGPC catalytic motif. The Escherichia coli cytoplasm contains two thioredoxins, Trx1 and Trx2. Trx2 is special because it is induced under oxidative stress conditions and it has an additional N-terminal zinc-binding domain. We have determined the redox potential of Trx2, the pKa of the active site nucleophilic cysteine, as well as the stability of the oxidized and reduced form of the protein. Trx2 is more oxidizing than Trx1 (-221 mV versus -284 mV, respectively), which is in good agreement with the decreased value of the pKa of the nucleophilic cysteine (5.1 versus 7.1, respectively). The difference in stability between the oxidized and reduced forms of an oxidoreductase is the driving force to reduce substrate proteins. This difference is smaller for Trx2 (ΔΔG°H2O = 9 kJ/mol and ΔTm = 7. 4 °C) than for Trx1 (ΔΔG°H2O = 15 kJ/mol and ΔTm = 13 °C). Altogether, our data indicate that Trx2 is a significantly less reducing enzyme than Trx1, which suggests that Trx2 has a distinctive function. We disrupted the zinc center by mutating the four Zn2+-binding cysteines to serine. This mutant has a more reducing redox potential (-254 mV) and the pKa of its nucleophilic cysteine shifts from 5.1 to 7.1. The removal of Zn2+ also decreases the overall stability of the reduced and oxidized forms by 3.2 kJ/mol and 5.8 kJ/mol, respectively. In conclusion, our data show that the Zn2+-center of Trx2 fine-tunes the properties of this unique thioredoxin.  相似文献   

13.
Caldendrin, L- and S-CaBP1 are CaM-like Ca2+-sensors with different N-termini that arise from alternative splicing of the Caldendrin/CaBP1 gene and that appear to play an important role in neuronal Ca2+-signaling. In this paper we show that Caldendrin is abundantly present in brain while the shorter splice isoforms L- and S-CaBP1 are not detectable at the protein level. Caldendrin binds both Ca2+ and Mg2+ with a global Kd in the low µM range. Interestingly, the Mg2+-binding affinity is clearly higher than in S-CaBP1, suggesting that the extended N-terminus might influence Mg2+-binding of the first EF-hand. Further evidence for intra- and intermolecular interactions of Caldendrin came from gel-filtration, surface plasmon resonance, dynamic light scattering and FRET assays. Surprisingly, Caldendrin exhibits very little change in surface hydrophobicity and secondary as well as tertiary structure upon Ca2+-binding to Mg2+-saturated protein. Complex inter- and intramolecular interactions that are regulated by Ca2+-binding, high Mg2+- and low Ca2+-binding affinity, a rigid first EF-hand domain and little conformational change upon titration with Ca2+ of Mg2+-liganted protein suggest different modes of binding to target interactions as compared to classical neuronal Ca2+-sensors.  相似文献   

14.
15.
Electrochromic styryl dyes were used to investigate mutually antagonistic effects of Ca2+ and H+ on binding of the other ion in the E1 and P-E2 states of the SR Ca-ATPase. On the cytoplasmic side of the protein in the absence of Mg2+ a strictly competitive binding sequence, H2E1?HE1?E1?CaE1?Ca2E1, was found with two Ca2+ ions bound cooperatively. The apparent equilibrium dissociation constants were in the order of K1/2(2 Ca) = 34 nM, K1/2(H) = 1 nM and K1/2(H2) = 1.32 μM. Up to 2 Mg2+ ions were also able to enter the binding sites electrogenically and to compete with the transported substrate ions (K1/2(Mg) = 165 μM, K1/2(Mg2) = 7.4 mM). In the P-E2 state, with binding sites facing the lumen of the sarcoplasmatic reticulum, the measured concentration dependence of Ca2+ and H+ binding could be described satisfactorily only with a branched reaction scheme in which a mixed state, P-E2CaH, exists. From numerical simulations, equilibrium dissociation constants could be determined for Ca2+ (0.4 mM and 25 mM) and H+ (2 μM and 10 μM). These simulations reproduced all observed antagonistic concentration dependences. The comparison of the dielectric ion binding in the E1 and P-E2 conformations indicates that the transition between both conformations is accompanied by a shift of their (dielectric) position.  相似文献   

16.
Otacilio C. Moreira 《BBA》2005,1708(3):411-419
The bidentate complex of ATP with Cr3+, CrATP, is a nucleotide analog that is known to inhibit the sarcoplasmic reticulum Ca2+-ATPase and the Na+,K+-ATPase, so that these enzymes accumulate in a conformation with the transported ion (Ca2+ and Na+, respectively) occluded from the medium. Here, it is shown that CrATP is also an effective and irreversible inhibitor of the plasma membrane Ca2+-ATPase. The complex inhibited with similar efficiency the Ca2+-dependent ATPase and the phosphatase activities as well as the enzyme phosphorylation by ATP. The inhibition proceeded slowly (T1/2 = 30 min at 37 °C) with a Ki = 28 ± 9 μM. The inclusion of ATP, ADP or AMPPNP in the inhibition medium effectively protected the enzyme against the inhibition, whereas ITP, which is not a PMCA substrate, did not. The rate of inhibition was strongly dependent on the presence of Mg2+ but unaltered when Ca2+ was replaced by EGTA. In spite of the similarities with the inhibition of other P-ATPases, no apparent Ca2+ occlusion was detected concurrent with the inhibition by CrATP. In contrast, inhibition by the complex of La3+ with ATP, LaATP, induced the accumulation of phosphoenzyme with a simultaneous occlusion of Ca2+ at a ratio close to 1.5 mol/mol of phosphoenzyme. The results suggest that the transport of Ca2+ promoted by the plasma membrane Ca2+-ATPase goes through an enzymatic phospho-intermediate that maintains Ca2+ ions occluded from the media. This intermediate is stabilized by LaATP but not by CrATP.  相似文献   

17.
Complexation of d-gluconate (Gluc) with Ca2+ has been investigated via 1H, 13C and 43Ca NMR spectroscopy in aqueous solutions in the presence of high concentration background electrolytes (1 M ? I ? 4 M (NaCl) ionic strength). From the ionic strength dependence of its formation constant, the stability constant at 6 ? pH ? 11 and at I → 0 M has been derived (). The protonation constant of Gluc at I = 1 M (NaCl) ionic strength was also determined and was found to be log Ka = 3.24 ± 0.01 (13C NMR) and log Ka = 3.23 ± 0.01 (1H NMR). It was found that 1H and 13C NMR chemical shifts upon complexation (both with H+ and with Ca2+) do not vary in an unchanging way with the distance from the Ca2+/H+ binding site. From 2D 1H-43Ca NMR spectra, simultaneous binding of Ca2+ to the alcoholic OH on C2 and C3 was deduced. Molecular modelling results modulated this picture by revealing structures in which the Gluc behaves as a multidentate ligand. The five-membered chelated initial structure was found to be thermodynamically more stable than that derived from a six-membered chelated initial structure.  相似文献   

18.
Cartilage Acidic Protein 2 (CRTAC2) is a novel protein present from prokaryotes to vertebrates with abundant expression in the teleost fish pituitary gland and an isoform of CRTAC1, a chondrocyte marker in humans. The two proteins are non-integrins containing N-terminal integrin-like Ca2 +-binding motifs and their structure and function remain to be assigned. Structural studies of recombinant sea bream (sb)CRTAC2 revealed it is composed of 8.8% α-helix, 33.4% β-sheet and 57.8% unordered protein. sbCRTAC2 bound Ca2 + with high affinity (Kd = 1.46 nM) and favourable Gibbs free energy (?G = − 12.4 kcal/mol). The stoichiometry for Ca2 + bound to sbCRTAC2 at saturation indicated six Ca2 + ligand-binding sites exist per protein molecule. No conformational change in sbCRTAC2 occurred in the presence of Ca2 +. Fluorescence emission revealed that the tertiary structure of the protein is hyperthermostable between 25 °C and 95 °C and the fully unfolded state is only induced by chemical denaturing (4 M GndCl). sbCRTAC has a widespread tissue distribution and is present as high molecular weight aggregates, although strong reducing conditions promote formation of the monomer. sbCRTAC2 promotes epithelial cell outgrowth in vitro suggesting it may share functional homology with mammalian CRTAC1, recently implicated in cell–cell and cell–matrix interactions.  相似文献   

19.
S100A3, a member of the EF-hand-type Ca2+-binding S100 protein family, is unique in its exceptionally high cysteine content and Zn2+ affinity. We produced human S100A3 protein and its mutants in insect cells using a baculovirus expression system. The purified wild-type S100A3 and the pseudo-citrullinated form (R51A) were crystallized with ammonium sulfate in N,N-bis(2-hydroxyethyl)glycine buffer and, specifically for postrefolding treatment, with Ca2+/Zn2+ supplementation. We identified two previously undocumented disulfide bridges in the crystal structure of properly folded S100A3: one disulfide bridge is between Cys30 in the N-terminal pseudo-EF-hand and Cys68 in the C-terminal EF-hand (SS1), and another disulfide bridge attaches Cys99 in the C-terminal coil structure to Cys81 in helix IV (SS2). Mutational disruption of SS1 (C30A + C68A) abolished the Ca2+ binding property of S100A3 and retarded the citrullination of Arg51 by peptidylarginine deiminase type III (PAD3), while SS2 disruption inversely increased both Ca2+ affinity and PAD3 reactivity in vitro. Similar backbone structures of wild type, R51A, and C30A + C68A indicated that neither Arg51 conversion by PAD3 nor SS1 alters the overall dimer conformation. Comparative inspection of atomic coordinates refined to 2.15−1.40 Å resolution shows that SS1 renders the C-terminal classical Ca2+-binding loop flexible, which are essential for its Ca2+ binding properties, whereas SS2 structurally shelters Arg51 in the metal-free form. We propose a model of the tetrahedral coordination of a Zn2+ by (Cys)3His residues that is compatible with SS2 formation in S100A3.  相似文献   

20.
The Ca2+-binding helix-loop-helix structural motif called “EF-hand” is a common building block of a large family of proteins that function as intracellular Ca2+-receptors. These proteins respond specifically to micromolar concentrations of Ca2+ in the presence of ~1000-fold excess of the chemically similar divalent cation Mg2+. The intracellular free Mg2+ concentration is tightly controlled in a narrow range of 0.5-1.0 mM, which at the resting Ca2+ levels is sufficient to fully or partially saturate the Ca2+-binding sites of many EF-hand proteins. Thus, to convey Ca2+ signals, EF-hand proteins must respond differently to Ca2+ than to Mg2+. In this review the structural aspects of Mg2+ binding to EF-hand proteins are considered and interpreted in light of the recently proposed two-step Ca2+-binding mechanism (Grabarek, Z., J. Mol. Biol., 2005, 346, 1351). It is proposed that, due to stereochemical constraints imposed by the two-EF-hand domain structure, the smaller Mg2+ ion cannot engage the ligands of an EF-hand in the same way as Ca2+ and defaults to stabilizing the apo-like conformation of the EF-hand. It is proposed that Mg2+ plays an active role in the Ca2+-dependent regulation of cellular processes by stabilizing the “off state” of some EF-hand proteins, thereby facilitating switching off their respective target enzymes at the resting Ca2+ levels. Therefore, some pathological conditions attributed to Mg2+ deficiency might be related to excessive activation of underlying Ca2+-regulated cellular processes. This article is part of a Special Issue entitled: 11th European Symposium on Calcium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号