首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Mutations between the leucines of the "leucine zipper" domain of Jun D can either decrease (Asn 301 to Ala) or increase (Thr 307, Ala 308, to Glu, Val) homodimer formation and specific binding to DNA even though such changes do not modify the predicted alpha-helical structure of this region. As shown previously, addition of Fos strongly increases the affinity of Jun for DNA by forming a heterodimer. The jun down mutation (Asn 301 to Ala) also diminishes DNA binding by the Fos-Jun D heterodimer. These data strongly support the coiled coil conformation of this region where residues adjacent to the leucines are also important for dimer formation. Ultraviolet cross-linking experiments have shown that both Fos and Jun directly contact the TGACTCA palindromic sequence defined as a TPA (12-O-tetradecanoyl phorbol-13-acetate) response element or TRE. Both Jun homodimers and Jun-Fos heterodimers bind this TRE as well as the cAMP responsive element (CRE or TGACGTCA) with comparable affinities. While strong c-Jun or Jun D binding requires a perfect palindrome, Jun-Fos complexes can also efficiently recognize sequences where the right half of the palindrome is less conserved (TGACTAA or TGACGCA).  相似文献   

3.
We have used fluorescence anisotropy to measure in situ the thermodynamics of binding of alanine-rich mutants of the GCN4 basic region/leucine zipper (bZIP) to short DNA duplexes, in which thymines were replaced with uracils, in order to quantify the contributions of the C5 methyl group on thymines with alanine methyl side chains. We simplified the alpha-helical GCN4 bZIP by alanine substitution: 4A, 11A, and 18A contain four, 11, and 18 alanine mutations in their DNA-binding basic regions, respectively. Titration of fluorescein-labeled duplexes with increasing amounts of protein yielded dissociation constants in the low-to-mid nanomolar range for all bZIP mutants in complex with the AP-1 target site (5'-TGACTCA-3'); binding to the nonspecific control duplex was >1000-fold weaker. Small changes of <1 kcal/mol in binding free energies were observed for wild-type bZIP and 4A mutant to uracil-containing AP-1, whereas 11A and 18A bound almost equally well to native AP-1 and uracil-containing AP-1. These modest changes in binding affinities may reflect the multivalent nature of protein-DNA interactions, as our highly mutated proteins still exhibit native-like behavior. These protein mutations may compensate for changes in enthalpic and entropic contributions toward DNA-binding in order to maintain binding free energies similar to that of the native protein-DNA complex.  相似文献   

4.
The effect of low molecular-weight compounds on the equilibrium constant K(A) can be used to explore the energetics and molecular mechanism of protein-DNA interactions. Here we use the complex composed of the integrase Tn916 DNA-binding domain and its target DNA duplex to investigate the effects of salt and the nonionic osmolytes glycerol and sorbitol on sequence-specific protein-DNA association. Increasing Na(+) concentration from 0.12 to 0.32 M weakens the binding affinity by a factor of 20. The decrease of affinity is dominated by a large loss of binding enthalpy but only a small loss of binding entropy. This contrasts the concept that the salt-induced weakening of protein-DNA binding is mainly entropic. The large enthalpy loss is discussed in the light of recent views about the nature of the general salt effect. Addition of up to 2.5 M sorbitol and up to 3.3 M glycerol causes a slight increase of the binding affinity. However, both osmolytes lead to a large enthalpy gain and a similarly large entropy loss. This intriguing enthalpy-entropy compensation can be explained in part by an enthalpic chelate effect: The osmolyte tightens the structure of the protein-DNA complex whereby the formation of enthalpically favorable noncovalent interactions is promoted at the entropic cost of a more rigid complex. The results were obtained by isothermal titration calorimetry. They are supported by kinetic experiments showing that the rate of formation of the complex is reduced by salt, but the rate of complex dissociation is not. Glycerol and sorbitol reduce both rates in line with an only small effect on complex stability. This work clarifies the thermodynamic and kinetic response of a novel protein-DNA complex to increased salt and the presence of two common, nonionic osmolytes.  相似文献   

5.
6.
The energetic profiles of a significant number of protein-DNA systems at 20 °C reveal that, despite comparable Gibbs free energies, association with the major groove is primarily an enthalpy-driven process, whereas binding to the minor groove is characterized by an unfavorable enthalpy that is compensated by favorable entropic contributions. These distinct energetic signatures for major versus minor groove binding are irrespective of the magnitude of DNA bending and/or the extent of binding-induced protein refolding. The primary determinants of their different energetic profiles appear to be the distinct hydration properties of the major and minor grooves; namely, that the water in the A+T-rich minor groove is in a highly ordered state and its removal results in a substantial positive contribution to the binding entropy. Since the entropic forces driving protein binding into the minor groove are a consequence of displacing water ordered by the regular arrangement of polar contacts, they cannot be regarded as hydrophobic.  相似文献   

7.
8.
9.
The stability and dynamics of a double-stranded DNA (dsDNA) is affected by the preferential occupancy of small monovalent molecular ions. Small metal and molecular ions such as sodium and alkyl ammonium have crucial biological functions in human body, affect the thermodynamic stability of the duplex DNA and exhibit preferential binding. Here, using atomistic molecular dynamics simulations, we investigate the preferential binding of metal ion such as Na+ and molecular ions such as tetramethyl ammonium (TMA+) and 2-hydroxy-N,N,N-trimethylethanaminium (CHO+) to double-stranded DNA. The thermodynamic driving force for a particular molecular ion-DNA interaction is determined by decomposing the free energy of binding into its entropic and enthalpic contributions. Our simulations show that each of these molecular ions preferentially binds to the minor groove of the DNA and the extent of binding is highest for CHO+. The ion binding processes are found to be entropically favourable. In addition, the contribution of hydrophobic effects towards the entropic stabilisation (in case of TMA+) and the effect of hydrogen bonding contributing to enthalpic stabilisation (in case of CHO+) have also been investigated.  相似文献   

10.
Chan IS  Fedorova AV  Shin JA 《Biochemistry》2007,46(6):1663-1671
We previously reported that a basic region/leucine zipper (bZIP) protein, a hybrid of the GCN4 basic region and C/EBP leucine zipper, not only recognizes cognate target sites AP-1 (5'-TGACTCA-3') and cAMP-response element (CRE) (5'-TGACGTCA-3') but also binds selectively to noncognate DNA sites: C/EBP (CCAAT/enhancer binding protein, 5'-TTGCGCAA), XRE1 (xenobiotic response element, 5'-TTGCGTGA), HRE (HIF response element, 5'-GCACGTAG), and E-box (5'-CACGTG). In this work, we used electrophoretic mobility shift assay (EMSA) and circular dichroism (CD) for more extensive characterization of the binding of wt bZIP dimer to noncognate sites as well as full- and half-site derivatives, and we examined changes in flanking sequences. Quantitative EMSA titrations were used to measure dissociation constants of this hybrid, wt bZIP, to DNA duplexes: Full-site binding affinities gradually decrease from cognate sites AP-1 and CRE with Kd values of 13 and 12 nM, respectively, to noncognate sites with Kd values of 120 nM to low microM. DNA-binding selectivity at half sites is maintained; however, half-site binding affinities sharply decrease from the cognate half site (Kd = 84 nM) to noncognate half sites (all Kd values > 2 microM). CD shows that comparable levels of alpha-helical structure are induced in wt bZIP upon binding to cognate AP-1 or noncognate sites. Thus, noncognate sites may contribute to preorganization of stable protein structure before binding target DNA sites. This work demonstrates that the bZIP scaffold may be a powerful tool in the design of small, alpha-helical proteins with desired DNA recognition properties.  相似文献   

11.
12.
SH2 domains play important roles in signal transduction by binding phosphorylated tyrosine residues on cell surface receptors. In an effort to understand the mechanism of ligand binding and more specifically the role of water, we have designed a general computational protocol based on the potential of mean force to compute the thermodynamics of water molecules at the protein-ligand interface for two SH2 domain complexes of the Src kinase, those bound to the two peptides Ac-PQpYEpYI-NH2 and Ac-PQpYIpYV-NH2 where pY indicates a phosphotyrosine. These two peptides were chosen because they have similar binding affinities but very different entropic/enthalpic thermodynamic binding signatures, indicating different interactions with solvent. We find that the isoleucine to valine mutation at position +3 (the third amino acid C-terminal to pY) in the ligand has only limited impact on the water structure. By contrast, the glutamic acid to isoleucine mutation at position +1 has a significant impact by not only abrogating a local hydrophilic binding site but, more importantly and surprisingly, inducing a favorable nonlocal entropic contribution from the water molecules around the phosphorylated tyrosine at the +2 position. Our study demonstrates the validity of the method reported here for exploring the thermodynamic solvation landscape of protein-protein interactions.  相似文献   

13.
14.
The conformation adopted by a ligand on binding to a receptor may differ from its lowest-energy conformation in solution. In addition, the bound ligand is more conformationally restricted, which is associated with a configurational entropy loss. The free energy change due to these effects is often neglected or treated crudely in current models for predicting binding affinity. We present a method for estimating this contribution, based on perturbation theory using the quasi-harmonic model of Karplus and Kushick as a reference system. The consistency of the method is checked for small model systems. Subsequently we use the method, along with an estimate for the enthalpic contribution due to ligand-receptor interactions, to calculate relative binding affinities. The AMBER force field and generalized Born implicit solvent model is used. Binding affinities were estimated for a test set of 233 protein-ligand complexes for which crystal structures and measured binding affinities are available. In most cases, the ligand conformation in the bound state was significantly different from the most favorable conformation in solution. In general, the correlation between measured and calculated ligand binding affinities including the free energy change due to ligand conformational change is comparable to or slightly better than that obtained by using an empirically-trained docking score. Both entropic and enthalpic contributions to this free energy change are significant.  相似文献   

15.
This study utilizes sensitive, modern isothermal titration calorimetric methods to characterize the microscopic thermodynamic parameters that drive the binding of basic drugs to α‐1‐acid glycoprotein (AGP) and thereby rationalize the thermodynamic data in relation to docking models and crystallographic structures of the drug–AGP complexes. The binding of basic compounds from the tricyclic antidepressant series, together with miaserine, chlorpromazine, disopyramide and cimetidine, all displayed an exothermically driven binding interaction with AGP. The impact of protonation/deprotonation events, ionic strength, temperature and the individual selectivity of the A and F1*S AGP variants on drug‐binding thermodynamics was characterized. A correlation plot of the thermodynamic parameters for all of the test compounds revealed that an enthalpy–entropy compensation is in effect. The exothermic binding energetics of the test compounds were driven by a combination of favorable (negative) enthalpic (?Hº) and favorable (positive) entropic (?Sº) contributions to the Gibbs free energy (?Gº). Collectively, the data imply that the free energies that drive drug binding to AGP and its relationship to drug serum residency evolve from the complex interplay of enthalpic and entropic forces from interactions with explicit combinations of hydrophobic and polar side‐chain sub‐domains within the multi‐lobed AGP ligand binding cavity.Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

16.
We constructed plasmids encoding the sequences for the bZip modules of c-Jun and c-Fos which could then be expressed as soluble proteins in Escherichia coli. The purified bZip modules were tested for their binding capacities of synthetic oligonucleotides containing either TRE or CRE recognition sites in electrophoretic mobility shift assays and circular dichroism (CD). Electrophoretic mobility shift assays showed that bZip Jun homodimers and bZip Jun/Fos heterodimers bind a collagenase-like TRE (CTGACTCAT) with dissociation constants of respectively 1.4 x 10(-7) M and 5 x 10(-8) M. As reported earlier [Patel et al. (1990) Nature 347, 572-575], DNA binding induces a marked change of the protein structure. However, we found that the DNA also undergoes a conformational change. This is most clearly seen with small oligonucleotides of 13 or 14 bp harboring respectively a TRE (TGACTCA) or a CRE (TGACGTCA) sequence. In this case, the positive DNA CD signal at 280 nm increases almost two-fold with a concomitant blue-shift of 3-4 nm. Within experimental error the same spectral changes are observed for TRE and CRE containing DNA fragments. The spectral changes observed with a non-specific DNA fragment are weaker and the signal of free DNA is recovered upon addition of much smaller salt concentrations than required for a specific DNA fragment. Surprisingly the spectral changes induced by Jun/Jun homodimers are not identical to those induced by Jun/Fos heterodimers. However, in both cases the increase of the positive CD band and the concomitant blue shift would be compatible with a B to A-transition of part of the binding site or a DNA conformation intermediate between the canonical A and B structures.  相似文献   

17.
We show that a minimalist basic region/leucine zipper (bZIP) hybrid, comprising the yeast GCN4 basic region and C/EBP leucine zipper, can target mammalian and other gene regulatory sequences naturally targeted by other bZIP and basic/helix-loop-helix (bHLH) proteins. We previously reported that this hybrid, wt bZIP, is capable of sequence-specific, high-affinity binding of DNA comparable to that of native GCN4 to the cognate AP-1 and CRE DNA sites. In this work, we used DNase I footprinting and electrophoretic mobility shift assay to show that wt bZIP can also specifically target noncognate gene regulatory sequences: C/EBP (CCAAT/enhancer binding protein, 5'-TTGCGCAA), XRE1 (Xenobiotic response element, 5'-TTGCGTGA), HRE (HIF response element, 5'-GCACGTAG), and the E-box (Enhancer box, 5'-CACGTG). Although wt bZIP still targets AP-1 with strongest affinity, both DNA-binding specificity and affinity are maintained with wt bZIP binding to noncognate gene regulatory sequences: the dissociation constant for wt bZIP in complex with AP-1 is 13 nM, while that for C/EBP is 120 nM, XRE1 240 nM, and E-box and HRE are in the microM range. These results demonstrate that the bZIP possesses the versatility to bind various sequences with varying affinities, illustrating the potential to fine-tune a designed protein's affinity for its DNA target. Thus, the bZIP scaffold may be a powerful tool in design of small, alpha-helical proteins with desired DNA recognition properties.  相似文献   

18.
The energetic basis of GCN4-bZIP complexes with the AP-1 and ATF/CREB sites was investigated by optical methods and scanning and isothermal titration microcalorimetry. The dissociation constant of the bZIP dimer was found to be significantly higher than that of its isolated leucine zipper domain: at 20 degrees C it is 1.45microM and increases with temperature. To avoid complications from dissociation of this dimer, DNA binding experiments were carried out using an SS crosslinked version of the bZIP. The thermodynamic characteristics of the bZIP/DNA association measured at different temperatures and salt concentrations were corrected for the contribution of refolding the basic segment upon binding, determined from the scanning calorimetric experiments. Fluorescence anisotropy titration experiments showed that the association constants of the bZIP at 20 degrees C with the AP-1 and ATF/CREB binding sites do not differ much, being 1.5nM and 6.4nM, corresponding to Gibbs energies of -49kJmol(-1) and -46kJmol(-1), respectively. Almost half of the Gibbs energy is attributable to the electrostatic component, resulting from the entropic effect of counterion release upon DNA association with the bZIP and is identical for both sites. In contrast to the Gibbs energies, the enthalpies of association of the fully folded bZIP with the AP-1 and ATF/CREB sites, and correspondingly the entropies of association, are very different. bZIP binding to the AP-1 site is characterized by a substantially larger negative enthalpy and non-electrostatic entropy than to the ATF/CREB site, implying that the AP-1 complex incorporates significantly more water molecules than the ATF/CREB complex.  相似文献   

19.
The effect of channel length on the barrier for potassium ion permeation through single-file channels has been studied by means of all-atom molecular dynamics simulations. Using series of peptidic gramicidin-like and simplified ring-structured channels, both embedded in model membranes, we obtained two distinct types of behavior: saturation of the central free energy barriers for peptidic channels and a linear increase in simplified ring-structured channels with increasing channel length. The saturation of the central free energy barrier for the peptidic channels occurs at relatively short lengths, and it is correlated with the desolvation from the bulk water. Remarkably, decomposition of free energy barriers into enthalpic and entropic terms reveals an entropic cost for ion permeation. Furthermore, this entropic cost dominates the ion permeation free energy barrier, since the corresponding free energy contribution is higher than the enthalpic barrier. We conclude that the length dependence of the free energy is enthalpy-dominated, but the entropy is the major contribution to the permeation barrier. The decrease in rotational water motion and the reduction of channel mobility are putative origins for the overall entropic penalty.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号