首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
In this report we analyze the protein product of a growth arrest-specific gene, gas2, by means of an affinity-purified antibody raised against the protein produced in bacteria. The regulation of Gas2 biosynthesis reflects the pattern of mRNA expression (Schneider, C., R. King, and L. Philipson. 1988. Cell. 54:787-793): its relative level is tightly associated with growth arrest. Gas2 seems to be regulated also at the posttranslational level via a phosphorylation mechanism. Gas2 is well conserved during the evolution with the same apparent molecular mass (36 kD) between mouse and human. We also demonstrate that Gas2 is a component of the microfilament system. It colocalizes with actin fiber, at the cell border and also along the stress fiber, in growth-arrested NIH 3T3 cells. The pattern of distribution, detected in arrested cells, can also be observed in growing cells when they are microinjected with the purified GST-Gas2 protein. In none of the analyzed oncogene-transformed NIH 3T3 cell lines was Gas2 expression induced under serum starvation.  相似文献   

2.
3.
One of the major activities of melanocytes in skin is to produce melanin and transport it via dendrites to neighboring keratinocytes. Here, we present evidence that Rab8, a member of the small GTPase superfamily, is present in purified melanosomal fractions, and is upregulated by pigmentogenic agents like melanocyte-stimulating hormone/isobutylmethyl xanthine (MSH/IBMX) and ultraviolet radiation B (UVB). Confocal immunofluorescence microscopic studies revealed that Rab8 is colocalized with Mel5, a melanosomal protein, at the trans-Golgi area and in the cytoplasmic vesicles of B16 cells. During MSH/IBMX treatment, while a number of dendrites with numerous processes are formed, colocalization is extended towards the tips of protrusions. Since process formation is supported by cytoskeletal assembly as well as membrane transport, we tested the colocalization of Rab8 with actin filaments in B16 cells. Rab8, indeed, colocalized with phalloidin, mostly at the periphery, but when irradiated with UVB, cells were rounded instead of dendritic, and colocalization was found predominantly at the cytoplasmic area. Further, suppression of Rab8 expression by its antisense oligonucleotide revealed the reduction in staining intensity of Rab8 but not of Mel5, dendrite formation and melanosome transport towards the tips of the dendrites in B16 melanoma cells. Taken together, it is suggestive that Rab8, in B16 melanoma cells, might have a role in melanosome traffic and dendrite extension, both in constitutive and regulated fashion.This investigation was supported in part by Grants-In-Aid for Scientific Research from the Ministry of Education, Science, and Culture, Japan (grant 15591176)  相似文献   

4.
5.
Gas6 is a secreted protein previously identified as the ligand of the Axl receptor tyrosine kinase. We have shown that Gas6 is able to induce cell cycle reentry of serum-starved NIH 3T3 cells and to efficiently prevent apoptosis after complete growth factor removal, a survival effect uncoupled from Gas6-induced mitogenesis. Here we report that the mitogenic effect of Gas6 requires phosphatidylinositol 3-kinase (PI3K) activity since it is abrogated both by the specific inhibitor wortmannin and by overexpression of the dominant negative P13K p85 subunit. Consistently, Gas6 activates the P13K downstream targets S6K and Akt, whose activation is abrogated by addition of wortmannin. Moreover, rapamycin treatment blocks Gas6-induced entry into the S phase of serum-starved NIH 3T3 cells. We also demonstrate the requirement of Src tyrosine kinase for Gas6 signalling since stable or transient expression of a catalytically inactive form of Src significantly inhibited Gas6-stimulated entry into the S phase. Accordingly, Gas6 addition to serum-starved NIH 3T3 cells causes activation of the intrinsic Src kinase activity. When specifically analyzed in a survival assay, these elements were found to be required for the survival effect of Gas6. Taken together, the evidence presented here identifies elements involved in the Gas6 transduction pathway that are responsible for its antiapoptotic effect and suggests that Src is involved in the events regulating cell survival.  相似文献   

6.
Li MS  Li PF  Yang FY  He SP  Du GG  Li G 《Cell research》2002,12(2):151-156
AIM The existence and properties of alpha-fetoprotein (AFP) receptor on the surface of NIH 3T3 cells and the effects of AFP on cellular signal transduction pathway were investigated. METHODS The effect of AFP on the proliferation of NIH 3T3 cells was measured by incorporation of 3H-TdR. Receptor-binding assay of 125I-AFP was performed to detect the properties of AFP receptor in NIH 3T3 cells. The influences of AFP on the [cAMP]i and the activities of protein kinase A (PKA) were determined. Western blot was used to detect the change of K-ras P21 protein expression. RESULTS The proliferation of NIH 3T3 cells treated with 0-80 mg/L of AFP was significantly enhanced. The Scatchard analysis indicated that there were two classes of binding sites with KD of 2.722×10-9M (Bmax=12810 sites per cell) and 8.931× 10-8M (Bmax=119700 sites per cell) respectively. In the presence of AFP (20 mg/L), the content of cAMP and activities of PKA were significantly elevated . The level of K-ras P21 protein was upregulated by  相似文献   

7.
8.
9.
E3B1, a human homologue of the mouse gene product Abi-1, has been implicated in growth-factor-mediated regulation of the small GTPases p21Ras and Rac. E3b1 is a regulator of Rac because it can form a complex with Sos-1 and eps8, and such a Sos-1-e3B1-eps8 complex serves as a guanine nucleotide exchange factor for Rac. In the present study, we found that overexpression of e3B1 in NIH3T3/EGFR cells sensitized EGF-induced activation of Rac1, whereas it had no impact on EGF-induced activation of p21Ras. Remarkably, we found that EGF-induced activation of the p21Ras-related GTPase Rap1 was also sensitized in NIH3T3/EGFR-e3B1 cells. Thus, in NIH3T3/EGFR-e3B1 cells, maximal EGF-induced activation of Rap1 occurs with a dose of EGF much lower than in NIH3T3/EGFR cells. We also report that overexpression of e3B1 in NIH3T3/EGFR cells renders EGF-induced activation of Rap1 completely dependent on Src tyrosine kinases but not on c-Abl. However, EGF-induced tyrosine phosphorylation of the Rap GEF C3G occurred regardless of whether e3B1 was overexpressed or not, and this did not involve Src tyrosine kinases. Accordingly, we propose that overexpression of e3B1 in NIH3T3/EGFR cells leads to mobilization of Src tyrosine kinases that participate in EGF-induced activation of Rap1 and inhibition of cell proliferation.  相似文献   

10.
Human c-fgr induces a monocyte-specific enzyme in NIH 3T3 cells.   总被引:1,自引:0,他引:1       下载免费PDF全文
The mutant c-fgr protein (p58c-fgr/F523) containing Phe-523 instead of Tyr-523 exhibited transforming activity in NIH 3T3 cells like other protein-tyrosine kinases of the src family, but normal p58c-fgr (p58c-fgr/wt) did not. The mutant protein showed tyrosine kinase activity threefold higher than that of the normal protein in vitro. Surprisingly, transfection of the normal c-fgr gene into NIH 3T3 cells resulted in induction of sodium fluoride (NaF)-sensitive alpha-naphthyl butyrate esterase (alpha-NBE), a marker enzyme of cells of monocytic origin, which was not induced in v-src-, v-fgr-, or lyn-transfected NIH 3T3 cells. The NaF-sensitive alpha-NBE induced in c-fgr transfectants was shown by isoelectric focusing to have a pI of 5.2 to 5.4, a range which was the same as those for thioglycolate-induced murine peritoneal macrophages and 1 alpha,25-dihydroxyvitamin D3-treated WEHI-3B cells. Immunoblotting studies with antiphosphotyrosine antibodies revealed that 58-, 62-, 75-, 120-, 200-, and 230-kDa proteins were commonly phosphorylated at tyrosine residues in NIH 3T3 cells transfected with normal and mutated c-fgr, while 95-kDa protein was significantly phosphorylated at tyrosine residues in cells transfected with the mutated c-fgr. These findings suggest that tyrosine phosphorylation of specific cellular substrate proteins is important in induction of NaF-sensitive alpha-NBE and cell transformation by p58c-fgr.  相似文献   

11.
The small GTP-binding protein Rab4 has been involved in the recycling of alphavbeta3 integrins in response to platelet-derived growth factor (PDGF) stimulation suggesting a role for Rab4 in cell adhesion and migration. In this study, we explored the role of Rabip4 and Rabip4', two Rab4 effector proteins, in migration of NIH 3T3 fibroblasts. In these cells, Rabip4 and Rabip4', collectively named Rabip4s, were partially co-localized with the early endosomal marker EEA1. PDGF treatment re-distributed endogenous Rabip4s toward the cell periphery where they colocalized with F-actin. In cells expressing green fluorescent protein (GFP)-Rabip4 or GFP-Rabip4', constitutive appearance of GFP-Rabip4s at the cell periphery was accompanied by local increase in cortical F-actin in membrane ruffles at the leading edge. The expression of GFP-Rabip4 induced an increased migration compared with control cells expressing GFP alone, even in the absence of PDGF stimulation. On the contrary, in cells expressing a mutated form of Rabip4s unable to interact with Rab4, lack of typical leading edge was observed. Furthermore, PDGF treatment did not stimulate the migration of these cells. Furthermore, down-regulation of the expression of Rabip4s inhibited PDGF-stimulated cell migration. Endogenous Rabip4s were localized with alphav integrins at the leading edge following PDGF treatment, whereas in cells expressing GFP-Rabip4s, alphav integrins, together with GFP-Rabip4s, were constitutively localized at the leading edge. In contrast, reduction in Rabip4s expression levels using small interfering RNA was associated with impaired PDGF-induced translocation of alphav integrins toward the leading edge. Taken together, our data provide evidence that Rabip4s, possibly via their interaction with Rab4, regulate integrin trafficking and are involved in the migration of NIH 3T3 fibroblasts.  相似文献   

12.
The human CD81 (hCD81) molecule has been identified as a putative receptor for hepatitis C virus (HCV). In this study, eukaryotic expression vector pCDM8-hCD81 containing hCD81 cDNA and pSV2neo helper plasmid was used to cotransfect with lipofectamine into murine fibroblast cell line NIH/3T3 to establish an hCD81-expressing cell line. Resistant cell clones were obtained 20 days after the selection with neomycin (600 micro/ml) and then cultured as monoclones. The expression of the transfected hCD81 gene in the cells was verified by RT-PCR and flow cytometry analyses. One of the selected cell clones showed obvious expression of hCD81 and was named NIH/3T3-hCD81. Competitive inhibition tests indicated that the binding of monoclonal anti-hCD81 (JS-81) to NIH/3T3-hCD81 cells was inhibited by recombinant HCV E2 protein, suggesting that the expressed hCD81 molecules on NIH/3T3-hCD81 cells maintain natural conformation of binding to HCV E2. The transfected NIH/3T3-hCD81 cells should be of great potential value in studies on HCV attachment and onset of infection.  相似文献   

13.
Rab3A is a small guanosine triphosphate (GTP)-binding protein that has been recently implicated in intracellular vesicle transport and the secretion of neurotransmitters in neuronal cells. We demonstrate here that Rab3A is associated with melanosomes in pigment cells. Rab3A as well as Rabphilin3A, a putative target protein of Rab3A, were detected in the melanosome fraction, purified from B16 murine melanoma cells by sucrose density gradient ultracentrifugation. In contrast, Rab GDP dissociation inhibitor (GDI), a GDP/GTP exchange protein for Rab3A, was found in the cytosol fraction. Further studies using confocal laser scanning microscopy and immunoelectron microscopy revealed that immunoreactive Rab3A is localized in conjunction with the melanosomal membrane. These results suggest the possibility of involvement of Rab3A-Rabphilin3A complex, regulated by Rab GDI, in the intracellular transport of melanosomes in pigment cells.  相似文献   

14.
Ca2+-induced translocation of hexose carriers from microsomal membrane to plasma membrane was demonstrated in saponin-permeabilized Swiss 3T3 cells by a specific D-glucose-inhibitable cytochalasin B-binding assay. The number of hexose carriers in the plasma membrane and the hexose transport activity in intact cells were also compared. The incubation of permeabilized cells with 10 microM Ca2+ at 37 degrees C rapidly increased the number of D-glucose-inhibitable cytochalasin B-binding sites in the plasma membrane from 13 to 40 pmol/mg protein and concomitantly decreased that in the microsomal membrane from 66 to 36 pmol/mg protein, each with a half-time of approx. 2 min. Furthermore, when Ca2+-stimulated cells were exposed to 50 microM EGTA, the effect of Ca2+ on the translocation of D-glucose-inhibitable cytochalasin B-binding sites was reversed with a half-time of approx. 5 min. The concentration of Ca2+ required for the half-maximal effect was approx 500 nM. The magnitude of the stimulatory effect of D-glucose-inhibitable cytochalasin B-binding sites in the plasma membrane closely correlated with the magnitude of stimulatory action of Ca2+ on 3-O-methylglucose transport in the intact cells. These results suggest that Ca2+ regulates the activity of hexose transport across the plasma membrane through a rapid and reversible translocation of hexose carrier between microsomal and plasma membranes of mouse fibroblast Swiss 3T3 cells.  相似文献   

15.
Gas3/PMP22 plays a crucial role in regulating myelin formation and maintenance, and different genetic alterations in gas3/PMP22 are responsible for a set of human peripheral neuropathies. We have previously demonstrated that Gas3/PMP22 could regulate susceptibility to apoptosis in NIH3T3 cells but not in REF 52 cells. In this report we demonstrate that when the apoptotic response triggered by gas3/PMP22 was counteracted by Bcl-2 coexpression, morphological changes were observed. Time-lapse analysis confirmed that Gas3/PMP22 can modulate cell spreading, and this effect was strengthened after inhibition of phosphoinositide 3-kinase. Using the active form of the small GTPase RhoA, we have been able to dissect the different Gas3/PMP22 biological activities. RhoA counteracted the Gas3/PMP22-dependent morphological response but was unable to neutralize the apoptotic response. Treatment of NIH3T3 cells with cytotoxic necrotizing factor 1, which activates endogenous Rho, also counteracted Gas3/PMP22-mediated cell shape and spreading changes. Treatment of REF 52 cells, which are unresponsive to Gas3/PMP22 overexpression, with the C3 exoenzyme, inhibiting Rho activity, renders REF 52 cells responsive to Gas3/PMP22 overexpression for cell shape and spreading changes. Finally, assembly of stress fibers and focal adhesions complexes, in response to lysophosphatidic acid-induced endogenous Rho activation, was impaired in Gas3/PMP22-overexpressing cells. We hypothesize that cell shape and spreading regulated by Gas3/PMP22 through the Rho GTPase might have an important role during Schwann cells differentiation and myelinization.  相似文献   

16.
The regulation of ppp(A2'p)nA-(2-5A)-dependent RNase (RNase L or RNase F) was investigated in NIH 3T3, clone 1 cells using 2-5A-binding and nuclease activity assays. Minimal levels of 2-5A-dependent RNase were detected in actively dividing clone 1 cells; these levels were independently induced by growth arrest or interferon treatment. Accordingly, levels of the RNase were enhanced during growth arrest by confluency regardless of the presence or absence of interferon or antibody to interferon in the media. Measurement of 2-5A-dependent RNase was unaffected by the addition of any of six different proteinase inhibitors to the cells prior to extraction. The expression of 2-5A-dependent RNase in growth-arrested, interferon-treated cells was still relatively low (about one-third to one-half of that found in similarly treated murine Ehrlich ascites tumor cells). Although this amount of 2-5A-dependent RNase could not be detected by 2-5A-mediated ribosomal RNA cleavage, the activity was identified using a more sensitive novel assay for 2-5A-dependent RNase. In addition, introduction of 2-5A or poly(I) X poly(C) into growth-arrested, interferon-treated cells resulted in some inhibition of protein synthesis. The results indicated that the expression of 2-5A-dependent RNase in NIH 3T3, clone 1 cells is regulated under different physiological conditions and that low levels of 2-5A-dependent RNase were insufficient to significantly inhibit encephalomyocarditis virus replication.  相似文献   

17.
We previously demonstrated that the primary cilium coordinates platelet-derived growth factor (PDGF) receptor (PDGFR) α–mediated migration in growth-arrested fibroblasts. In this study, we investigate the functional relationship between ciliary PDGFR-α and the Na+/H+ exchanger NHE1 in directional cell migration. NHE1 messenger RNA and protein levels are up-regulated in NIH3T3 cells and mouse embryonic fibroblasts (MEFs) during growth arrest, which is concomitant with cilium formation. NHE1 up-regulation is unaffected in Tg737orpk MEFs, which have no or very short primary cilia. In growth-arrested NIH3T3 cells, NHE1 is activated by the specific PDGFR-α ligand PDGF-AA. In wound-healing assays on growth-arrested NIH3T3 cells and wild-type MEFs, NHE1 inhibition by 5′-(N-ethyl-N-isopropyl) amiloride potently reduces PDGF-AA–mediated directional migration. These effects are strongly attenuated in interphase NIH3T3 cells, which are devoid of primary cilia, and in Tg737orpk MEFs. PDGF-AA failed to stimulate migration in NHE1-null fibroblasts. In conclusion, stimulation of directional migration in response to ciliary PDGFR-α signals is specifically dependent on NHE1 activity, indicating that NHE1 activation is a critical event in the physiological response to PDGFR-α stimulation.  相似文献   

18.
The growth-arrest-specific gene, Gas7, is required for neurite outgrowth in cerebellar neurons. Here we report that Gas7 can induce the formation of extended cellular processes in NIH3T3 cells by interacting with actin and mediating reorganization of microfilaments. The Gas 7 protein, which increased markedly during growth arrest of NIH3T3 cells and persisted transiently at high levels upon reentry of cells into the cell cycle, localized near the plasma membrane and selectively colocalized with microfilaments in membrane ruffles. Process extensions induced by ectopic overexpression of Gas7 were blocked by the actin-depolymerizing agent cytochalasin D, suggesting that membrane extensions produced by Gas7 require actin polymerization. Association of endogenous Gas7 protein with microfilaments was verified by F-actin affinity chromatography; direct binding of purified His-Gas7 to actin also was demonstrated and shown to be mediated by the Gas7 C-terminal domain. Similarly, localization of Gas7 in membrane ruffles was mediated by the C-terminal domain, although neither this region nor the N-terminal domain was individually sufficient to induce process formation. Biochemical studies and electron microscopy showed that both full-length Gas7 protein and its C-terminal region can promote actin assembly as well as the crosslinking of actin filaments. We propose that Gas7 localized near the plasma membrane induces the assembly of actin and the membrane outgrowth.  相似文献   

19.
20.
The present study, we investigate the preventive role of naringin, a dietary flavonoid, against ultraviolet‐B (UVB) radiation (280‐320 nm) induced oxidative damage and inflammatory responses in mouse embryonic fibroblast cell lines (NIH‐3T3). In this study, 20 mJ/cm 2 of UVB radiation induces cell cytotoxicity, reactive oxygen species (ROS) generation, DNA damage, and antioxidants depletion in NIH‐3T3 cells. Treatment with naringin (60 µM) prior UVB exposure prevented the cell cytotoxicity, ROS generation, DNA damage, and antioxidants depletion in NIH‐3T3 cells. Furthermore, naringin prevents UVB‐induced mitogen‐activated protein kinase families and nuclear factor‐κB (NF‐κB)‐mediated activation of inflammatory factors, that is TNF‐α, IL‐6, IL‐10, and COX‐2 in NIH‐3T3 cells. Peroxisome proliferator‐activated receptor γ (PPARγ) is an anti‐inflammatory agent and it suppressed the UVB‐mediated oxidative and inflammatory responses. In this study, naringin activates PPARγ and prevents inflammatory biomarkers in NIH‐3T3 cells. Thus, naringin prevents UVB‐mediated inflammation and oxidative damage in NIH‐3T3 cells probably over controlling NF‐κB expression and activation of PPARγ.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号