首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Treatment of NB4 acute promyelocytic leukemia cells with 1,25-dihydroxyvitamin D3 (1,25D3) or analogs 20-epi-22-oxa-24a,26a,27a-trihomo-1alpha,25-dihydroxyvitamin D3, 1,24-dihydroxy-22-ene-24-cyclopropylvitamin D3, 1alpha,25-dihydroxylumisterol3, or 1alpha,25(OH)2-d5-previtamin D3 in combination with TPA induces monocytic differentiation. The role of 1,25D3 in the induction of maturation has been shown to be a priming effect. Differentiation in response to these agents requires VDR-independent signaling of 1,25D3, PKC signaling, intracellular calcium, and calpain activity. In this study we identify the NFkappaB/IkappaB signaling pathway as a target of 1,25D3 and TPA action. One of the priming effects of 1,25D3 appears to be the rapid phosphorylation of serine residues on IkappaBalpha. On their own, 1,25D3, its analogs, and TPA do not alter IkappaBalpha expression; however, combinations of analogs with TPA result in a synergistic decrease in IkappaBalpha expression. Decreased expression of IkappaBalpha likely results from enhanced degradation, which allows the observed subsequent nuclear translocation of NFkappaB subunit p65. Since nuclear-localized NFkappaB was observed only in combination-treated cells, it is proposed that nuclear targets of NFkappaB are required for monocytic differentiation. Intracellular calcium and proteolytic activity are both necessary for the induction of IkappaB regulation and translocation of NFkappaB and are critical components of the nongenomic signaling cascades of the 1,25D3-induced differentiation pathway.  相似文献   

3.
4.
5.
Human neutrophils differ from other cells by containing high amount of IkappaBalpha in the nucleus, and this increased nuclear IkappaBalpha accumulation is associated with the inhibition of NFkappaB activity and increased apoptosis. However, the mechanisms regulating NFkappaB activation and IkappaBalpha degradation in human neutrophils are little understood. The objective of this study was to provide a further insight into the mechanisms regulating NFkappaB activity and IkappaBalpha degradation in human neutrophils. We show that okadaic acid (OA), an inhibitor of protein phosphatases PP1 and PP2A, induces sustained activation of NFkappaB and degradation of the nuclear IkappaBalpha, and increases interleukin-8 expression in the neutrophils. Furthermore, inhibitors of protein kinase C-delta (PKCdelta) and IkappaB kinase (IKK) inhibit the OA-induced activation of NFkappaB. Collectively, our results indicate that in human neutrophils, the sustained activation of NFkappaB is regulated by a continuous phosphorylation and degradation of the nuclear IkappaBalpha.  相似文献   

6.
Mesenchymal stem cells (MSCs) have generated a great deal of interest in the field of regenerative medicine. Adipose-derived stromal cells (AdSCs) are known to exhibit extensive proliferation potential and can undergo multilineage differentiation, sharing similar characteristics to bone marrow-derived MSCs. However, as the effect of AdSCs on tumor growth has not been studied sufficiently, we assessed the degree to which AdSCs affect the proliferation of prostate cancer (PCa) cell. Human AdSCs exerted an inhibitory effect on the proliferation of androgen-responsive (LNCaP) and androgen-nonresponsive (PC3) human PCa cells, while normal human dermal fibroblasts (NHDFs) did not, and in fact promoted PCa cell proliferation to a degree. Moreover, AdSCs induced apoptosis of LNCaP cells and PC3 cells, activating the caspase3/7 signaling pathway. cDNA microarray analysis suggested that AdSC-induced apoptosis in both LNCaP and PC3 cells was related to the TGF-β signaling pathway. Consistent with our in vitro observations, local transplantation of AdSCs delayed the growth of tumors derived from both LNCaP- and PC3-xenografts in immunodeficient mice. This is the first preclinical study to have directly demonstrated that AdSC-induced PCa cell apoptosis may occur via the TGF-β signaling pathway, irrespective of androgen-responsiveness. Since autologous AdSCs can be easily isolated from adipose tissue without any ethical concerns, we suggest that therapy with these cells could be a novel approach for patients with PCa.  相似文献   

7.
Ubiquitin is one of the major components of Lewy bodies (LB), the pathological hallmark of Parkinson's disease (PD). Here, we identified that a phosphorylated form of IkappaBalpha (pIkappaBalpha), an inhibitor of NF-kappaB, and SCF(beta-TrCP), the ubiquitin ligase of pIkappaBalpha, are components of LB in brains of PD patients. In vitro studies identified those proteins in the ubiquitin- and alpha-synuclein (known as the major component of LB)-positive LB-like inclusions generated in dopaminergic SH-SY5Y cells treated with MG132, a proteasome inhibitor. Intriguingly, IkappaBalpha migration into such ubiquitinated inclusions in cells treated with MG132 was inhibited by a cell-permeable peptide known to block phosphorylation of IkappaBalpha, although this peptide did not influence cell viability under proteasomal inhibition. Our results indicate that phosphorylation of IkappaBalpha plays a role in the formation of IkappaBalpha-containing inclusions caused by proteasomal dysfunction, and that the generation of such inclusion is independent of cell death caused by impairment of proteasome.  相似文献   

8.
目的探讨干扰FSCN1基因表达对前列腺癌细胞凋亡、活性氧(ROS)水平影响及机制。方法以正常前列腺上皮细胞RWPE-1为对照细胞,通过RT-PCR及Western blot检测前列腺癌LNCaP、DU145和PC-3细胞中FSCN1 mRNA及蛋白表达;以LipofectamineTM 2000为载体,DU145细胞分为si-FSCN1组(靶向抑制FSCN1的小干扰RNAs转染DU145细胞)、阴性对照组(随机序列转染DU145细胞)及空白对照组(未转染的细胞),siRNA转染48 h,Western blot检测FSCN1、PCNA、NF-κB p65、p-NF-κB p65、IKKα和p-IKKα的蛋白表达。CCK8检测细胞活力,流式细胞术检测细胞凋亡率及ROS水平。多组间比较采用单因素方差分析,组间两两比较采用SNK-q检验。结果与RWPE-1细胞比较,LNCaP、DU145和PC-3细胞中FSCN1 mRNA(1比2.561±0.189、7.183±0.882、4.796±0.567、4.796±0.567)及蛋白表达(0.053±0.007比0.217±0.013、0.654±0.058、0.316±0.035)均升高,差异具有统计学意义(P均<0.05)。与阴性对照组比较,si-FSCN1组FSCN1表达(0.473±0.052比0.086±0.010)降低,差异具有统计学意义(P均<0.05)。与si-FSCN1组比较,空白对照组、阴性对照组细胞活力(0.302±0.033比0.787±0.069、0.764±0.063)均升高,凋亡率(24.54﹪±1.47﹪比3.04﹪±0.36﹪、3.28﹪±0.40﹪)和ROS相对荧光强度(90.04±5.73比47.88±3.62、49.62±4.11)均降低,差异具有统计学意义(P均<0.05)。与si-FSCN1组比较,空白对照组、阴性对照组PCNA(0.255±0.032比0.654±0.062、0.631±0.058)、NF-κB p65(0.092±0.011比0.296±0.032、0.318±0.037)、p-NF-κB p65(0.042±0.008比0.155±0.018、0.151±0.016)、IKKα(0.112±0.01比0.172±0.020、0.192±0.023)和p-IKKα的蛋白表达(0.051±0.005比0.102±0.011、0.091±0.009)均升高,Cleaved caspase3蛋白表达(0.206±0.018比0.074±0.009、0.085±0.010)均降低,差异具有统计学意义(P均<0.05)。阴性对照组与空白对照组细胞活力、凋亡率、ROS水平及FSCN1、PCNA、Cleaved caspase3、NF-κB p65、p-NF-κB p65、IKKα和p-IKKα的蛋白表达差异均无统计学意义(P>0.05)。结论干扰FSCN1基因表达可降低前列腺癌细胞活力及诱导凋亡,机制可能与ROS水平升高及NF-κB信号下调有关。  相似文献   

9.
Maintenance of telomeres regulates chromosomal stability and cellular mitosis through a checkpoint mechanism. Continuous cell proliferation requires telomerase to maintain chromosomal stability and to counteract the cellular mitotic clock. Importantly, nuclear expression of telomerase activity is required for elongation of telomere sequences. In this study, we show that tumor necrosis factor alpha (TNFalpha) induces telomerase activity in the cytoplasm of peripheral blood lymphocytes (PBL) at 60 min, followed by translocation of activated telomerase to the nucleus at 120 min. Conversely, the phosphoinositol 3-kinase (PI3K) inhibitor wortmannin blocks TNFalpha-induced activation of telomerase, whereas the specific NF-kappaB translocation inhibitor SN-50 blocks TNFalpha-induced nuclear translocation of activated telomerase. These studies suggest that activation and nuclear translocation of telomerase are regulated by PI3K/Akt/NF-kappaB signaling pathways in PBL.  相似文献   

10.
11.
Fragile histidine triad (FHIT) gene is involved in the deletions at the 3p14.2 region in various cancers. We investigated the role of Fhit protein in cell growth by examining the signaling pathway affected by Fhit. We used 3 human colon cancer cell lines, SW480, DLD-1 and COLO201, in the study. SW480 cells, in which the expression of Fhit is completely absent, were transfected with pIRES1neo vector (SW/IRES cells), wild-type FHIT vector (SW/FHIT cells) or mt-FHIT (codon 96, His changed to Asn) vector (SW/mt-FHIT cells). The growth of SW/FHIT or SW/mt-FHIT cells was suppressed in comparison with that of parent or SW/IRES cells. Especially, the growth of SW/FHIT cells was considerably suppressed. On the other hand, the silencing of FHIT by an siRNA for it in SW/FHIT or DLD-1 cells harboring Fhit demonstrated that the growth of FHIT siRNA-treated cells was significantly enhanced in comparison with that of the vector control or nonspecific siRNA control. Thus, we found that Fhit negatively contributed to cell growth in the colon cancer cell lines. Moreover, SW/FHIT cells exhibited a higher sensitivity to oxidative stress evoked by inhibitors of mitochondrial electron transport or proteasomes compared with any of the control transfectants. The base line amount of phospho-IkappaB-alpha (p-IkappaB-alpha) was reduced in SW/FHIT cells compared with that in the other transfectants. On the contrary, the FHIT siRNA-treated SW/FHIT and DLD-1 cells exhibited an elevated p-IkappaB-alpha level in an RNAi experiment on FHIT. Perturbation of nuclear factor (NF)-kappaB signaling was strongly suggested by the fact that the wild-type Fhit expressants of SW480 cells tended to be sensitive to sulfasarazine or parthenolide, which are inhibitors of NF-kappaB. The time course of the level of IkappaB kinase (IKK) complex (IKKalpha/beta, phospho-IKKalpha/beta and IKKgamma) after the treatment with TNF-alpha was similar between the transfectants. Although p-IkappaB-alpha and phospho-NF-kappaB p65 (p-NF-kappaB) in SW/FHIT cells responded to TNF-alpha as those in other transfectants, the increase in the levels of p-IkappaB-alpha and p-NF-kappaB after a 5-min treatment was less in SW/FHIT cells than in the other transfectants. These results altogether suggest that Fhit functions as an anti-oncoprotein by inhibiting the phosphorylation of IkappaB-alpha and thereby blocking NF-kappaB signaling.  相似文献   

12.
Approximately 50% of long-term cigarette smokers die prematurely from the adverse effects of smoking, including on lung cancer and other illnesses. Nicotine is a main component in tobacco and has been implicated as a potential factor in the pathogenesis of human lung cancer. However, the mechanism of nicotine action in the development of lung cancer remains largely unknown. In the present study, we designed a nicotine-apoptosis system, by pre-treatment of nicotine making lung cancer cell A549 to be in a physiological nicotine environment, and observed that nicotine promoted cell proliferation and prevented the menadione-induced apoptosis, and exerts its role of anti-apoptosis by shift of apoptotic stage induced by menadione from late apoptotic stage to early apoptotic stage, in which NF-kappaB was up-regulated. Interference analysis of NF-kappaB in A549 cells showed that knock down of NF-kappaB resulted in apoptosis promotion and counteracted the protective effect of nicotine. The findings suggest that nicotine has potential effect in lung cancer genesis, especially in patients with undetectable early tumor development and development of specific NF-kappaB inhibitors would represent a potentially exciting new pharmacotherapy for tobacco-related lung cancer.  相似文献   

13.
We have investigated to determine the source of ceramide produced during the genotoxic apoptosis induced by the anti-cancer drug, camptothecin (CPT), in human prostate cancer LNCaP cells by measuring the activities of acid and neutral sphingomyelinases (SMase) and by using fumonisinB(1) (FB(1)), the inhibitor of ceramide synthase involving de novo synthesis of ceramide. In contrast to time-dependent elevation of intracellular ceramide level after CPT-treatment, the activities of both SMases were not increased but rather decreased. Instead, pretreatment for 3 h with FB(1) (100 microM), an inhibitor of ceramide synthase, almost completely abrogated ceramide accumulation observed in cells exposed to CPT for 18 h. These results indicate that ceramide is produced via de novo pathway but not via sphingomyelin hydrolysis pathway. Furthermore, it is to be noted that the pretreatment with FB(1) did not affect the CPT-induced apoptosis as assessed by DNA ladder formation, Hoechst 33342 staining, flow cytometry, and mitochondrial potential thereby leading us to propose that ceramide accumulation is independent of apoptosis in this system.  相似文献   

14.
The mechanism of TNF-alpha-mediated chondrocyte apoptosis in human articular cartilage was investigated. First passage OA chondrocytes were treated with actinomycin D or MG132 in combination with TNF-alpha to facilitate cell death. The patterns of apoptosis-related proteins, NF-kappaB activation, and IkappaB degradation were analyzed. Cell death was increased by 0.2 microg/ml of actinomycin D or 20 microM MG132 in combination with TNF-alpha. Apoptosis potentiated by MG132 was more effectively inhibited by caspase inhibitors than that by actinomycin D. MG132 or actinomycin D both led to a significant increase in p53, but the expressions of the p53 response proteins increased only in MG132 treated chondrocytes. TNF-alpha induced chondrocyte IkappaB phosphorylation was unaffected by either MG132 or actinomycin D. MG132, but not actinomycin D, inhibited the chondrocyte IkappaB degradation induced by TNF-alpha and NF-kappaB activation. Our results suggest that MG132 and actinomycin D exert different influences upon TNF-alpha-mediated chondrocyte apoptotic signaling.  相似文献   

15.
Constitutive NF-kappaB activity has emerged as an important cell survival regulator. Canonical inducible NF-kappaB activation involves IkappaB kinase (IKK)-dependent dual phosphorylation of Ser 32 and 36 of IkappaBalpha to cause its beta-TrCP-dependent ubiquitylation and proteasomal degradation. We recently reported that constitutive NF-kappaB (p50/c-Rel) activity in WEHI231 B cells is maintained through proteasome inhibitor-resistant (PIR) IkappaBalpha degradation in a manner that requires Ser 32 and 36, without the requirement of a direct interaction with beta-TrCP. Here we specifically examined whether dual phosphorylation of Ser 32 and 36 was required for PIR degradation. Through mutagenesis studies, we found that dual replacement of Ser 32 and 36 with Glu permitted beta-TrCP and proteasome-dependent, but not PIR, degradation. Moreover, single replacement of either Ser residue with Leu permitted PIR degradation in WEHI231 B cells. These results indicate that PIR degradation occurs in the absence of dual phosphorylation, thereby explaining the beta-TrCP-independent nature of the PIR pathway. Additionally, we found evidence that PIR IkappaBalpha degradation controls constitutive NF-kappaB activation in certain multiple myeloma cells. These results suggest that B lineage cells can differentiate between PIR and canonical IkappaBalpha degradation through the absence or presence of dually phosphorylated IkappaBalpha.  相似文献   

16.
Mechanisms for 2-methoxyestradiol-induced apoptosis of prostate cancer cells   总被引:11,自引:0,他引:11  
Bu S  Blaukat A  Fu X  Heldin NE  Landström M 《FEBS letters》2002,531(2):141-151
Prostate and breast carcinomas are sex hormone-related carcinomas, which are known to be associated with an over-expression of the proto-oncogene Bcl-2. Here, we report that 2-methoxyestradiol (2-ME), an endogenous metabolite of estrogen that does not bind to nuclear estrogen receptors, effectively induces apoptosis in Bcl-2-expressing human prostate and breast carcinoma cells in vitro and in a rat prostate tumor model in vivo. In several cell lines derived from prostate, breast, liver and colorectal carcinomas, 2-ME treatment led to an activation of c-Jun N-terminal kinase (JNK) and phosphorylation of Bcl-2, which preceded the induction of apoptosis. In summary, our data suggest that 2-ME induces apoptosis in epithelial carcinomas by causing phosphorylation of JNK, which appears to be correlated with phosphorylation of Bcl-2.  相似文献   

17.
18.
Prostate cancer is one of the most common malignant cancers in men. Recent studies have shown that microRNA-21 (miR-21) is overexpressed in various types of cancers including prostate cancer. Studies on glioma, colon cancer cells, hepatocellular cancer cells and breast cancer cells have indicated that miR-21 is involved in tumor growth, invasion and metastasis. However, the roles of miR-21 in prostate cancer are poorly understood. In this study, the effects of miR-21 on prostate cancer cell proliferation, apoptosis, and invasion were examined. In addition, the targets of miR-21 were identified by a reported RISC-coimmunoprecipitation-based biochemical method. Inactivation of miR-21 by antisense oligonucleotides in androgen-independent prostate cancer cell lines DU145 and PC-3 resulted in sensitivity to apoptosis and inhibition of cell motility and invasion, whereas cell proliferation were not affected. We identified myristoylated alanine-rich protein kinase c substrate (MARCKS), which plays key roles in cell motility, as a new target in prostate cancer cells. Our data suggested that miR-21 could promote apoptosis resistance, motility, and invasion in prostate cancer cells and these effects of miR-21 may be partly due to its regulation of PDCD4, TPM1, and MARCKS. Gene therapy using miR-21 inhibition strategy may therefore be useful as a prostate cancer therapy.  相似文献   

19.
20.
Growing evidence suggests that oxidative stress is involved in the neuronal degeneration and can promote the aggregation of alpha-synuclein. However, the role of alpha-synuclein under physiological and pathological conditions remains poorly understood. In the present study, we examined the possible interaction between the alpha-synuclein and oxidative stress. In a dopaminergic cell line MES23.5, we have found that the 200microM H(2)O(2) treatment induced the translocation of alpha-synuclein from cytoplasm to nuclei at 30min post-treatment. The immunoactivity of alpha-synuclein became highly intensive in the nuclei after 2h treatment. The protein translocated to nucleus was a 10kDa fragment of C-terminus region of alpha-synuclein, while full-length alpha-synuclein remained in cytoplasm. Thioflavine-S staining suggested that the C-terminal fragment in the nuclei has no beta-sheet structures. Our present results indicated that 200microM H(2)O(2) treatment induces the intranuclear accumulation of the C-terminal fragment of alpha-synuclein in dopaminergic neurons, whose role remains to be investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号