共查询到20条相似文献,搜索用时 0 毫秒
1.
We present a verified computational model of the SH3 domain transition state (TS) ensemble. This model was built for three separate SH3 domains using experimental phi-values as structural constraints in all-atom protein folding simulations. While averaging over all conformations incorrectly considers non-TS conformations as transition states, quantifying structures as pre-TS, TS, and post-TS by measurement of their transmission coefficient ("probability to fold", or p(fold)) allows for rigorous conclusions regarding the structure of the folding nucleus and a full mechanistic analysis of the folding process. Through analysis of the TS, we observe a highly polarized nucleus in which many residues are solvent-exposed. Mechanistic analysis suggests the hydrophobic core forms largely after an early nucleation step. SH3 presents an ideal system for studying the nucleation-condensation mechanism and highlights the synergistic relationship between experiment and simulation in the study of protein folding. 相似文献
2.
Ogura K Nagata K Horiuchi M Ebisui E Hasuda T Yuzawa S Nishida M Hatanaka H Inagaki F 《Journal of biomolecular NMR》2002,22(1):37-46
The three-dimensional structure of the N-terminal SH3 domain (residues 583–660) of murine Vav, which contains a tetra-proline sequence (Pro 607-Pro 610), was determined by NMR. The solution structure of the SH3 domain shows a typical SH3 fold, but it exists in two conformations due to cis-trans isomerization at the Gly614-Pro615 bond. The NMR structure of the P615G mutant, where Pro615 is replaced by glycine, reveals that the tetra-proline region is inserted into the RT-loop and binds to its own SH3 structure. The C-terminal SH3 domain of Grb2 specifically binds to the trans form of the N-terminal SH3 domain of Vav. The surface of Vav N-terminal SH3 which binds to Grb2 C-terminal SH3 was elucidated by chemical shift mapping experiments using NMR. The surface does not involve the tetra-proline region but involves the region comprising the n-src loop, the N-terminal and the C-terminal regions. This surface is located opposite to the tetra-proline containing region, consistent with that of our previous mutagenesis studies. 相似文献
3.
Ortega E Buey RM Sonnenberg A de Pereda JM 《The Journal of biological chemistry》2011,286(14):12429-12438
Plectin belongs to the plakin family of cytoskeletal crosslinkers, which is part of the spectrin superfamily. Plakins contain an N-terminal conserved region, the plakin domain, which is formed by an array of spectrin repeats (SR) and a Src-homology 3 (SH3), and harbors binding sites for junctional proteins. We have combined x-ray crystallography and small angle x-ray scattering (SAXS) to elucidate the structure of the central region of the plakin domain of plectin, which corresponds to the SR3, SR4, SR5, and SH3 domains. The crystal structures of the SR3-SR4 and SR4-SR5-SH3 fragments were determined to 2.2 and 2.95 Å resolution, respectively. The SH3 of plectin presents major alterations as compared with canonical Pro-rich binding SH3 domains, suggesting that plectin does not recognize Pro-rich motifs. In addition, the SH3 binding site is partially occluded by an intramolecular contact with the SR4. Residues of this pseudo-binding site and the SR4/SH3 interface are conserved within the plakin family, suggesting that the structure of this part of the plectin molecule is similar to that of other plakins. We have created a model for the SR3-SR4-SR5-SH3 region, which agrees well with SAXS data in solution. The three SRs form a semi-flexible rod that is not altered by the presence of the SH3 domain, and it is similar to those found in spectrins. The flexibility of the plakin domain, in analogy with spectrins, might contribute to the role of plakins in maintaining the stability of tissues subject to mechanical stress. 相似文献
4.
Ortega Roldan JL Romero Romero ML Ora A Ab E Lopez Mayorga O Azuaga AI van Nuland NA 《Journal of biomolecular NMR》2007,39(4):331-336
CD2 associated protein (CD2AP) is an adaptor protein that plays an important role in cell to cell union needed for the kidney function. CD2AP interacts, as an adaptor protein, with different natural targets, such as CD2, nefrin, c-Cbl and podocin. These proteins are believed to interact to one of the three SH3 domains that are positioned in the N-terminal region of CD2AP. To understand the network of interactions between the natural targets and the three SH3 domains (SH3-A, B and C), we have started to determine the structures of the individual SH3 domains. Here we present the high-resolution structure of the SH3-C domain derived from NMR data. Full backbone and side-chain assignments were obtained from triple-resonance spectra. The structure was determined from distance restraints derived from high-resolution 600 and 800 MHz NOESY spectra, together with phi and psi torsion angle restraints based on the analysis of 1HN, 15N, 1Hα, 13Cα, 13CO and 13Cβ chemical shifts. Structures were calculated using CYANA and refined in water using RECOORD. The three-dimensional structure of CD2AP SH3-C contains all the features that are typically found in other SH3 domains, including the general binding site for the recognition of polyproline sequences. 相似文献
5.
SH3 Domains provide interesting targets for investigations of protein structure and dynamics because of their compact size
and importance for signal transduction. The present review summarizes recent research investigating SH3 domain structure and
dynamics, the discovery of novel SH3 domains, the role of SH3 domains in disease, and progress in targeting SH3 domains for
the development of novel therapeutics. Particular emphasis is placed on the unfolding/refolding characteristics of SH3 domains
and the potential importance of these processes for regulation of signal transduction. 相似文献
6.
Borreguero JM Dokholyan NV Buldyrev SV Shakhnovich EI Stanley HE 《Journal of molecular biology》2002,318(3):863-876
We perform a detailed analysis of the thermodynamics and folding kinetics of the SH3 domain fold with discrete molecular dynamic simulations. We propose a protein model that reproduces some of the experimentally observed thermodynamic and folding kinetic properties of proteins. Specifically, we use our model to study the transition state ensemble of the SH3 fold family of proteins, a set of unstable conformations that fold to the protein native state with probability 1/2. We analyze the participation of each secondary structure element formed at the transition state ensemble. We also identify the folding nucleus of the SH3 fold and test extensively its importance for folding kinetics. We predict that a set of amino acid contacts between the RT-loop and the distal hairpin are the critical folding nucleus of the SH3 fold and propose a hypothesis that explains this result. 相似文献
7.
Gmeiner WH Xu I Horita DA Smithgall TE Engen JR Smith DL Byrd RA 《Cell biochemistry and biophysics》2001,35(2):115-126
SH3 domains are a conserved feature of many nonreceptor protein tyrosine kinases, such as Hck, and often function in substrate
recruitment and regulation of kinase activity. SH3 domains modulate kinase activity by binding to polyproline helices (PPII helix) either intramolecularly or in target proteins. The preponderance of bimolecular and distal interactions between SH3
domains and PPII helices led us to investigate whether proximal placement of a PPII helix relative to an SH3 domain would result in tight, intramolecular binding. We have fused the PPII helix region of human GAP to the C-terminus of Hck SH3 and expressed the recombinant fusion protein in Eschericheria coli. The fusion protein, SH3Hck: PPIIhGAP, folded spontaneously into a structure in which the PPII helix was bound intramolecularly to the hydrophobic crevice of the SH3 domain. The SH3Hck: PPIIhGAP fusion protein is useful for investigating SH3: PPII helix interactions, for studying concepts in protein folding and design, and may represent a protein structural motif that
is widely distributed in nature. 相似文献
8.
Determination of the solution structure of the SH3 domain of human p56 Lck tyrosine kinase 总被引:2,自引:0,他引:2
Summary The solution structure of the SH3 domain of human p56 Lck tyrosine kinase (Lck-SH3) has been determined by multidimensional heteronuclear NMR spectroscopy. The structure was calculated from a total of 935 experimental restraints comprising 785 distance restraints derived from 1017 assigned NOE cross peaks and 150 dihedral angle restraints derived from 160 vicinal coupling constants. A novel combination of the constant-time 1H–13C NMR correlation experiment recorded with various delays of the constant-time refocusing delays and a fractionally 13C-labelled sample was exploited for the stereo-specific assignment of prochiral methyl groups. Additionally, 28 restraints of 14 identified hydrogen bonds were included. A family of 25 conformers was selected to characterize the solution structure. The average root-mean-square deviations of the backbone atoms (N, C, C, O) among the 25 conformers is 0.42 Å for residues 7 to 63. The N- and C-terminal residues, 1 to 6 and 64 to 81, are disordered, while the well-converged residues 7 to 63 correspond to the conserved sequences of other SH3 domains. The topology of the SH3 structure comprises five anti-parallel -strands arranged to form two perpendicular -sheets, which are concave and twisted in the middle part. The overall secondary structure and the backbone conformation of the core -strands are almost identical to the X-ray structure of the fragment containing the SH2-SH3 domains of p56 Lck [Eck et al. (1994) Nature, 368, 764–769]. The X-ray structure of the SH3 domain in the tandem SH2-SH3 fragment is spatially included within the ensemble of the 25 NMR conformers, except for the segment of residues 14 to 18, which makes intermolecular contacts with an adjacent SH2 molecule and the phosphopeptide ligand in the crystal lattice. Local structural differences from other known SH3 domains are also observed, the most prominent of which is the absence in Lck-SH3 of the two additional short -strands in the regions Ser15 to Glu17 and Gly25 to Glu27 flanking the so-called RT-Src loop. This loop (residues Glu17 to Leu24), together with the n-Src loop (residues Gln37 to Ser46) confines the ligand interaction site which is formed by a shallow patch of hydrophobic amino acids (His14, Tyr16, Trp41, Phe54 and Phe59). Both loops are flexible and belong to the most mobile regions of the protein, which is assessed by the heteronuclear 15N,1H-NOE values characterizing the degree of internal backbone motions. The aromatic residues of the ligand binding site are arranged such that they form three pockets for interactions with the polyproline ligand.Abbreviations CT
constant time
- HSQC
heteronuclear single-quantum coherence
- NOE
nuclear Overhauser enhancement
- NOESY
nuclear Overhauser enhancement spectroscopy
- SH2
Src homology domain 2
- SH3
Src homology domain 3 相似文献
9.
Background
CASKIN2 is a neuronal signaling scaffolding protein comprised of multiple ankyrin repeats, two SAM domains, and one SH3 domain. The CASKIN2 SH3 domain for an NMR structural determination because its peptide-binding cleft appeared to deviate from the repertoire of aromatic enriched amino acids that typically bind polyproline-rich sequences.Results
The structure demonstrated that two non-canonical basic amino acids (K290/R319) in the binding cleft were accommodated well in the SH3 fold. An K290Y/R319W double mutant restoring the typical aromatic amino acids found in the binding cleft resulted in a 20 °C relative increase in the thermal stability. Considering the reduced stability, we speculated that the CASKIN2 SH3 could be a nonfunctional remnant in this scaffolding protein.Conclusions
While the NMR structure demonstrates that the CASKIN2 SH3 domain is folded, its cleft has suffered two substitutions that prevent it from binding typical polyproline ligands. This observation led us to additionally survey and describe other SH3 domains in the Protein Data Bank that may have similarly lost their ability to promote protein-protein interactions.10.
The presence of residual structure in the unfolded state of the N-terminal SH3 domain of Drosophila drk (drkN SH3 domain) has been investigated using far- and near-UV circular dichroism (CD), fluorescence, and NMR spectroscopy. The unfolded (U(exch)) state of the drkN SH3 domain is significantly populated and exists in equilibrium with the folded (F(exch)) state under non-denaturing conditions near physiological pH. Denaturation experiments have been performed on the drkN SH3 domain in order to monitor the change in ellipticity, fluorescence intensity, and chemical shift between the U(exch) state and chemically or thermally denatured states. Differences between the unfolded and chemically or thermally denatured states highlight specific areas of residual structure in the unfolded state that are cooperatively disrupted upon denaturation. Results provide evidence for cooperative interactions in the unfolded state involving residues of the central beta-sheet, particularly the beta4 strand. Denaturation as well as hydrogen-exchange experiments demonstrate a non-native burial of the Trp ring within this "cooperative" core of the unfolded state. These findings support the presence of non-native hydrophobic clusters, organised by Trp rings, within disordered states. 相似文献
11.
Liubov V. Gushchina Azat G. Gabdulkhakov Stanislav V. Nikonov Vladimir V. Filimonov 《Journal of biomolecular structure & dynamics》2013,31(3):485-495
Abstract A new chimeric protein, named WT-CIIA, was designed by connecting the proline-rich decapeptide PPPVPPYSAG to the C-terminus of the alpha-spectrin SH3 domain through a natural twelve-residue linker to obtain a single-chain model that would imitate intramolecular SH3-ligand interaction. The crystal structure of this fusion protein was determined at 1.7 Å resolution. The asymmetric unit of the crystal contained two SH3 globules contacting with one PPPVPPY fragment located between them. The domains are related by the twofold non-crystallographic axis and the ligand lies in two opposite orientations with respect to the conservative binding sites of SH3 domains. 相似文献
12.
Politou AS Spadaccini R Joseph C Brannetti B Guerrini R Helmer-Citterich M Salvadori S Temussi PA Pastore A 《Journal of molecular biology》2002,316(2):305-315
Nebulin, a giant modular protein from muscle, is thought to act as a molecular ruler in sarcomere assembly. The C terminus of nebulin, located in the sarcomere Z-disk, comprises an SH3 domain, a module well known for its role in protein/protein interactions. SH3 domains are known to recognize proline-rich ligands, which have been classified as type I or type II, depending on their relative orientation with respect to the SH3 domain in the complex formed. Type I ligands are bound with their N terminus at the RT loop of the SH3 domain, while type II ligands are bound with their C terminus at the RT loop. Many SH3 domains can bind peptides of either class. Despite the potential importance of the SH3 domain for the function of nebulin as an integral part of a complex network of interactions, no in vivo partner has been identified so far. We have adopted an integrated approach, which combines bioinformatic tools with experimental validation to identify possible partners of nebulin SH3. Using the program SPOT, we performed an exhaustive screening of the muscle sequence databases. This search identified a number of potential nebulin SH3 partners, which were then tested experimentally for their binding affinity. Synthetic peptides were studied by both fluorescence and NMR spectroscopy. Our results show that nebulin SH3 domain binds selectively to type II peptides. The affinity for a type II peptide, 12 residues long, spanning the sequence of a stretch of titin known to colocalise with nebulin in the Z-disk is in the submicromolar range (0.7 microM). This affinity is among the highest found for SH3/peptide complexes, suggesting that the identified stretch could have significance in vivo. The strategy outlined here is of more general applicability and may provide a valuable tool to identify potential partners of SH3 domains and of other peptide-binding modules. 相似文献
13.
Recently a suite of six CPMG relaxation dispersion experiments has been described for quantifying millisecond time-scale exchange
processes in proteins. The methodology has been applied to study the folding reaction of a G48M Fyn SH3 domain mutant that
exchanges between the native state, and low populated unfolded and intermediate states. A complex non-linear global optimization
protocol allows extraction of the kinetics and thermodynamics of the 3-site exchange process from the experimental data, as
well as reconstruction of the amide group chemical shifts of the excited states. We show here, through a series of Monte-Carlo
simulations on various synthetic data sets, that the 3-site exchange parameters extracted for this system on the basis of
15N single-quantum (SQ) dispersion profiles exclusively, recorded at a single temperature, are significantly in error. While
a temperature dependent 15N study improves the robustness of extracted parameters, as does a combined analysis of 15N and 1H SQ data sets measured at a single temperature, the best agreement is observed in cases where the full complement of six
dispersion profiles per residue is analyzed. 相似文献
14.
D. A. Prokhorov M. A. Timchenko Yu. A. Kudrevatykh D. V. Fedyukina L. V. Gushchina V. S. Khristoforov V. V. Filimonov V. P. Kutyshenko 《Russian Journal of Bioorganic Chemistry》2008,34(5):578-585
A structural-dynamic study of one of the chimeric proteins (SHA) belonging to the SH3-Bergerac family and containing the KATANGKTYE sequence instead of the N47D48 β-turn in the spectrin SH3-domain was carried out by high resolution NMR spectroscopy. The spatial structure of the protein was determined and its dynamics in solution was investigated on the basis of the NMR data. The elongation of the SHA polypeptide chain in comparison with the WT-SH3 original protein (by ~17%) exerts practically no effect on the general topology of the molecule. The presence of a stable β-hairpin in the region of insertion was confirmed. This hairpin was shown to have a higher mobility in comparison with other regions of the protein. 相似文献
15.
Cobos ES Filimonov VV Vega MC Mateo PL Serrano L Martínez JC 《Journal of molecular biology》2003,328(1):221-233
The folding thermodynamics and kinetics of the alpha-spectrin SH3 domain with a redesigned hydrophobic core have been studied. The introduction of five replacements, A11V, V23L, M25V, V44I and V58L, resulted in an increase of 16% in the overall volume of the side-chains forming the hydrophobic core but caused no remarkable changes to the positions of the backbone atoms. Judging by the scanning calorimetry data, the increased stability of the folded structure of the new SH3-variant is caused by entropic factors, since the changes in heat capacity and enthalpy upon the unfolding of the wild-type and mutant proteins were identical at 298 K. It appears that the design process resulted in an increase in burying both the hydrophobic and hydrophilic surfaces, which resulted in a compensatory effect upon the changes in heat capacity and enthalpy. Kinetic analysis shows that both the folding and unfolding rate constants are higher for the new variant, suggesting that its transition state becomes more stable compared to the folded and unfolded states. The phi(double dagger-U) values found for a number of side-chains are slightly lower than those of the wild-type protein, indicating that although the transition state ensemble (TSE) did not change overall, it has moved towards a more denatured conformation, in accordance with Hammond's postulate. Thus, the acceleration of the folding-unfolding reactions is caused mainly by an improvement in the specific and/or non-specific hydrophobic interactions within the TSE rather than by changes in the contact order. Experimental evidence showing that the TSE changes globally according to its hydrophobic content suggests that hydrophobicity may modulate the kinetic behaviour and also the folding pathway of a protein. 相似文献
16.
Nardini M Mazzocco M Massaro A Maffei M Vergano A Donadini A Scartezzini P Bolognesi M 《Biochemical and biophysical research communications》2004,318(2):470-476
We report the 1.6 Angstrom resolution crystal structure of SH3BGRL3, a member of a new mammalian protein family of unknown function. The observed "thioredoxin fold" of SH3BGRL3 matches the tertiary structure of glutaredoxins, even in the N-terminal region where the sequence similarity between the two protein families is negligible. In particular, SH3BGRL3 displays structural modifications at the N-terminal Cys-x-x-Cys loop, responsible for glutathione binding and catalysis in glutaredoxins. The loop hosts a six residue insertion, yielding an extra N-terminal-capped helical turn, first observed here for the thioredoxin fold. This, together with deletion of both Cys residues, results in a substantial reshaping of the neighboring cleft, where glutathione is hosted in glutaredoxins. While not active in redox reaction and glutathione binding, SH3BGRL3 may act as an endogenous modulator of glutaredoxin activities by competing, with its fully conserved thioredoxin fold, for binding to yet unknown target proteins. 相似文献
17.
The SH3 domain folding transition state structure contains two well-ordered turn regions, known as the diverging turn and the distal loop. In the Src SH3 domain transition state, these regions are stabilized by a hydrogen bond between Glu30 in the diverging turn and Ser47 in the distal loop. We have examined the effects on folding kinetics of amino acid substitutions at the homologous positions (Glu24 and Ser41) in the Fyn SH3 domain. In contrast to most other folding kinetics studies which have focused primarily on non-disruptive substitutions with Ala or Gly, here we have examined the effects of substitutions with diverse amino acid residues. Using this approach, we demonstrate that the transition state structure is generally tolerant to amino acid substitutions. We also uncover a unique role for Ser at position 41 in facilitating folding of the distal loop, which can only be replicated by Asp at the same position. Both these residues appear to accelerate folding through the formation of short-range side-chain to backbone hydrogen bonds. The folding of the diverging turn region is shown to be driven primarily by local interactions. The diverging turn and distal loop regions are found to interact in the transition state structure, but only in the context of particular mutant backgrounds. This work demonstrates that studying the effects of a variety of amino acid substitutions on protein folding kinetics can provide unique insights into folding mechanisms which cannot be obtained by standard Phi value analysis. 相似文献
18.
Olivier Bornet Matthieu Nouailler Michaël Feracci Corinne Sebban-Kreuzer Deborah Byrne Hubert Halimi Xavier Morelli Ali Badache Françoise Guerlesquin 《FEBS letters》2014
Overexpression of the ErbB2 receptor tyrosine kinase is associated with most aggressive tumors in breast cancer patients and is thus one of the main investigated therapeutic targets. Human ErbB2 C-terminal domain is an unstructured anchor that recruits specific adaptors for signaling cascades resulting in cell growth, differentiation and migration. Herein, we report the presence of a SH3 binding motif in the proline rich unfolded ErbB2 C-terminal region. NMR analysis of this motif supports a PPII helix conformation and the binding to Fyn-SH3 domain. The interaction of a kinase of the Src family with ErbB2 C-terminal domain could contribute to synergistic intracellular signaling and enhanced oncogenesis. 相似文献
19.
Astrid Maaß Emine Deniz Tekin Anton Schüller Ahmet Palazoglu Dirk Reith Roland Faller 《Biochimica et Biophysica Acta - Proteins and Proteomics》2010,1804(10):2003-2015
We analyze the effect of different environmental conditions, sequence lengths and starting configurations on the folding and unfolding pathways of small peptides exhibiting beta turns. We use chignolin and a sequence of peptide G as examples. A variety of different analysis tools allows us to characterize the changes in the folding pathways. It is observed that different harmonic modes dominate not only for different conditions but also for different starting points. The modes remain essentially very similar but their relative importance varies. A detailed analysis from diverse viewpoints including the influence of the particular amino acid sequence, conformational aspects as well as the associated motions yields a global picture that is consistent with experimental evidence and theoretical studies published elsewhere. Patterns of modes that remain stable over a range of temperatures might serve as an additional diagnostic to identify conformations that have reliably adopted a native fold. This could aid in reconstructing the folding process of a complete protein by identifying conformationally determined regions. 相似文献
20.
John J. Alvarado Laurie Betts Jamie A. Moroco Thomas E. Smithgall Joanne I. Yeh 《The Journal of biological chemistry》2010,285(46):35455-35461
Most mammalian cell types depend on multiple Src family kinases (SFKs) to regulate diverse signaling pathways. Strict control of SFK activity is essential for normal cellular function, and loss of kinase regulation contributes to several forms of cancer and other diseases. Previous x-ray crystal structures of the SFKs c-Src and Hck revealed that intramolecular association of their Src homology (SH) 3 domains and SH2 kinase linker regions has a key role in down-regulation of kinase activity. However, the amino acid sequence of the Hck linker represents a suboptimal ligand for the isolated SH3 domain, suggesting that it may form the polyproline type II helical conformation required for SH3 docking only in the context of the intact structure. To test this hypothesis directly, we determined the crystal structure of a truncated Hck protein consisting of the SH2 and SH3 domains plus the linker. Despite the absence of the kinase domain, the structures and relative orientations of the SH2 and SH3 domains in this shorter protein were very similar to those observed in near full-length, down-regulated Hck. However, the SH2 kinase linker adopted a modified topology and failed to engage the SH3 domain. This new structure supports the idea that these noncatalytic regions work together as a “conformational switch” that modulates kinase activity in a manner unique to the SH3 domain and linker topologies present in the intact Hck protein. Our results also provide fresh structural insight into the facile induction of Hck activity by HIV-1 Nef and other Hck SH3 domain binding proteins and implicate the existence of innate conformational states unique to individual Src family members that “fine-tune” their sensitivities to activation by SH3-based ligands. 相似文献