首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 16 毫秒
1.
A scaffold hopping strategy was employed to identify new chemotypes that inhibit noroviruses. The replacement of the cyclosulfamide scaffold by an array of heterocyclic scaffolds lead to the identification of additional series of compounds that possessed anti-norovirus activity in a cell-based replicon system.  相似文献   

2.
A new class of compounds that exhibit anti-norovirus activity in a cell-based system and embody in their structure a cyclosulfamide scaffold has been identified. The structure of the initial hit (compound 2a, ED(50) 4 μM, TD(50) 50 μM) has been prospected by exploiting multiple points of diversity and generating appropriate structure-activity relationships.  相似文献   

3.
Human neutrophil elastase (HNE) is a potent serine protease belonging to the chymotrypsin family. It is an important target for the development of novel and selective inhibitors for the treatment of inflammatory diseases, especially pulmonary pathologies. Here, we report the synthesis and biological evaluation of a new series of HNE inhibitors with a pyrrolo[2,3-b]pyridine scaffold, which is an isomer of our previously reported indazoles, in order to assess how a shift of the nitrogen from position 2 to position 7 influences activity. The majority of new compounds were effective HNE inhibitors and had IC50 values in the micromolar/submicromolar range, with some compounds active in low nanomolar levels. For example, 2a and 2b inhibited HNE with IC50 values of 15 and 14?nM, respectively. Molecular modeling of compounds differing in the position of heteroatom(s) in the bicyclic moiety and in the oxadiazole ring demonstrated that the calculated geometries of enzyme-inhibitor complexes were in agreement with the observed biological activities. Docking experiments showed that orientation of the active pyrrolo[2,3-b]pyridines in the HNE catalytic triad Ser195-His57-Asp102 correlated with effectiveness of the inhibitor interaction with the enzyme. Thus, the pyrrolo[2,3-b]pyridine scaffold represents a novel scaffold for the development of potent HNE inhibitors.  相似文献   

4.
A structurally-diverse series of carboxylate derivatives based on the 1,2,5-thiadiazolidin-one 1,1 dioxide scaffold were synthesized and used to probe the S′ subsites of human neutrophil elastase (HNE) and neutrophil proteinase 3 (Pr 3). Several compounds are potent inhibitors of HNE but devoid of inhibitory activity toward Pr 3, suggesting that the S′ subsites of HNE exhibit significant plasticity and can, unlike Pr 3, tolerate various large hydrophobic groups. The results provide a promising framework for the design of highly selective inhibitors of the two enzymes.  相似文献   

5.
Compounds that can effectively inhibit the proteolytic activity of human neutrophil elastase (HNE) represent promising therapeutics for treatment of inflammatory diseases. We present here the synthesis, structure–activity relationship analysis, and biological evaluation of a new series of HNE inhibitors with a cinnoline scaffold. These compounds exhibited HNE inhibitory activity but had lower potency compared to N-benzoylindazoles previously reported by us. On the other hand, they exhibited increased stability in aqueous solution. The most potent compound, 18a, had a good balance between HNE inhibitory activity (IC50 value?=?56?nM) and chemical stability (t1/2?=?114?min). Analysis of reaction kinetics revealed that these cinnoline derivatives were reversible competitive inhibitors of HNE. Furthermore, molecular docking studies of the active products into the HNE binding site revealed two types of HNE inhibitors: molecules with cinnolin-4(1H)-one scaffold, which were attacked by the HNE Ser195 hydroxyl group at the amido moiety, and cinnoline derivatives containing an ester function at C-4, which is the point of attack of Ser195.  相似文献   

6.
The design of novel functionalized templates capable of binding to the active site of serine proteases could potentially lead to the development of potent and highly selective non-covalent inhibitors of these enzymes. Using the elastase-turkey ovomucoid inhibitor complex and insights gained from earlier work based on the 1,2,5-thiadiazolidin-3-one 1,1 dioxide scaffold (I), a surrogate cyclosulfamide scaffold (II) was used for the first time in the design of reversible inhibitors of human leukocyte elastase. Compounds 7 and 8 were found to be micromolar reversible inhibitors of the enzyme.  相似文献   

7.
Human neutrophil elastase (HNE) plays an important role in tumour invasion and inflammation. A series of N-benzoylindazoles was synthesized and evaluated for their ability to inhibit HNE. We found that this scaffold is appropriate for HNE inhibitors and that the benzoyl fragment at position 1 is essential for activity. The most active compounds inhibited HNE activity with IC?? values in the submicromolar range. Furthermore, docking studies indicated that the geometry of an inhibitor within the binding site and energetics of Michaelis complex formation were key factors influencing the inhibitor's biological activity. Thus, N-benzoylindazole derivatives and their analogs represent novel structural templates that can be utilized for further development of efficacious HNE inhibitors.  相似文献   

8.
The synthesis, inhibitory activity and mode of action of oxazolidine-2,4-diones against porcine pancreatic elastase, here used as a model for human neutrophil elastase, are reported. The nature of N-substitution at the oxazolidine-2,4-dione scaffold has large effect on the inhibitory potency against elastase. N-Acyl and N-sulfonyloxazolidine-2,4-diones emerged as potent pseudo-irreversible inhibitors, displaying high second-order rate constants for PPE inactivation. The title compounds were also shown to be potent inhibitors of human neutrophil elastase (HNE) and proteinase-3, and weak inhibitors of human cathepsin G. The results herein presented show that the oxazolidine-2,4-diones represent a new promising class of serine protease inhibitors.  相似文献   

9.

Scope

Inhibiting human neutrophil elastase (HNE) is a promising strategy for treating inflammatory lung diseases, such as H1N1 and SARS virus infections. The use of sivelestat, the only clinically registered synthesized HNE inhibitor, is largely limited by its risk of organ toxicity because it irreversibly inhibits HNE. Therefore, potent reversible HNE inhibitors are promising alternatives to sivelestat.

Methods and Results

An in vitro HNE inhibition assay was employed to screen a series of triterpenes. Six pentacyclic triterpenes, but not tetracyclic triterpenes, significantly inhibited HNE. Of these pentacyclic triterpenes, ursolic acid exhibited the highest inhibitory potency (IC50 = 5.51 µM). The HNE inhibitory activity of ursolic acid was further verified using a mouse model of acute smoke-induced lung inflammation. The results of nuclear magnetic resonance and HNE inhibition kinetic analysis showed that the pentacyclic triterpenes competitively and reversibly inhibited HNE. Molecular docking experiments indicated that the molecular scaffold, 28-COOH, and a double bond at an appropriate location in the pentacyclic triterpenes are important for their inhibitory activity.

Conclusion

Our results provide insights into the effects of pentacyclic triterpenes on lung inflammatory actions through reversible inhibition of HNE activity.  相似文献   

10.
Histone deacetylase inhibitors (HDACIs) are promising antineoplastic agents for the treatment of cancer. Here we report that the lipid peroxidation end product 4-hydroxynonenal (HNE) significantly potentiates the anti-tumor effects of the HDAC inhibitor panobinostat (LBH589) in the PC3 prostate cancer cell model. Panobinostat and HNE inhibited proliferation of PC3 cells and the combination of the two agents resulted in a significant combined effect. Cell cycle analysis revealed that both single agents and, to a greater extent, their combined treatment induced G2/M arrest, but cell death occurred in the combined treatment only. Furthermore, HNE and, to a greater extent, the combined treatment induced dephosphorylation of Cdc2 leading to progression into mitosis as confirmed by α-tubulin/DAPI staining and phospho-histone H3 (Ser10) analysis. To evaluate possible induction of DNA damage we utilized the marker phosphorylated histone H2A.X. Results showed that the combination of panobinostat and HNE induced significant DNA damage concomitant with the mitotic arrest. Then, by using androgen receptor (AR)-expressing PC3 cells we observed that the responsiveness to HNE and panobinostat was independent of the expression of functional AR. Taken together, our data suggest that HNE potentiates the antitumoral effect of the HDACI panobinostat in prostate cancer cells.  相似文献   

11.
The combination of antagonism at histamine H(3) receptors and inhibition of acetylcholinesterase has been recently proposed as an approach to devise putative new therapeutic agents for cognitive diseases. The 4,4'-biphenyl fragment has been reported by us as a rigid scaffold leading to potent and selective non-imidazole H(3)-antagonists. Starting from these premises, the current work presents an expanded series of histamine H(3) receptor antagonists, characterized by a central 4,4'-biphenyl scaffold, where the structure-activity profile of both mono-basic and di-basic compounds is further explored and their ability to inhibit rat brain cholinesterase activity is determined. The steric properties and basicity of the terminal groups were modulated in symmetrical compounds, carrying identical substituents, and in asymmetrical compounds, having a piperidine ring at one end and different groups at the other. The length of the linker connecting the biphenyl scaffold to the terminal groups was also modulated. Binding studies at rat and human H(3) receptors evidenced the highest binding affinities for di-basic compounds, in the order of nM concentrations, and that the steric requirements for the two terminal groups are different. Many potent compounds showed good selectivity profiles over the other histamine receptors. Interestingly, some derivatives displayed a moderate ability to inhibit rat brain cholinesterase, for example compound 12 (1-[2-(4'-piperidinomethyl-biphenyl-4-yl)ethyl]piperidine) has a pIC(50)=5.96 for cholinesterase inhibition and high H(3) receptor binding affinity and antagonist potency (pK(i)=8.70; pK(B)=9.28). These compounds can be considered as rigid analogs of a recently reported class of dual-acting compounds and as a promising starting point for the design of new H(3)-antagonists with anti-cholinesterase activity.  相似文献   

12.
Human neutrophil elastase (HNE) is an important target for the development of novel and selective inhibitors to treat inflammatory diseases, especially pulmonary pathologies. Here, we report the synthesis, structure–activity relationship analysis, and biological evaluation of a new series of HNE inhibitors with an isoxazol-5(2H)-one scaffold. The most potent compound (2o) had a good balance between HNE inhibitory activity (IC50 value =20?nM) and chemical stability in aqueous buffer (t1/2=8.9?h). Analysis of reaction kinetics revealed that the most potent isoxazolone derivatives were reversible competitive inhibitors of HNE. Furthermore, since compounds 2o and 2s contain two carbonyl groups (2-N-CO and 5-CO) as possible points of attack for Ser195, the amino acid of the active site responsible for the nucleophilic attack, docking studies allowed us to clarify the different roles played by these groups.  相似文献   

13.
Reactive carbonyl species (RCS) are cytotoxic molecules that originate from lipid peroxidation and sugar oxidation. Natural derivatives can be an attractive source of potential RCS scavenger. However, the lack of analytical methods to screen and identify bioactive compounds contained in complex matrices has hindered their identification. The sequestering actions of various rice extracts on RCS have been determined using ubiquitin and 4-hydroxy-2-nonenal (HNE) as a protein and RCS model, respectively. Black rice with giant embryo extract was found to be the most effective among various rice varieties. The identification of bioactive compounds was then carried out by an isotopic signature profile method using the characteristic isotopic ion cluster generated by the mixture of HNE: 2H5-HNE mixed at a 1:1 stoichiometric ratio. An in-house database was used to obtain the structures of the possible bioactive components. The identified compounds were further confirmed as HNE sequestering agents through HPLC-UV analysis.  相似文献   

14.
In the present study, the effects of 4-hydroxy-2-nonenal (HNE) on highly purified pyruvate dehydrogenase complex (PDC) and its catalytic components in vitro and on PDC, alpha-ketoglutarate dehydrogenase complex (KGDC), and the branched-chain alpha-keto acid dehydrogenase complex (BCKDC) activities in cultured human HepG2 cells were investigated. Among the PDC components, the activity of the dihydrolipoamide acetyltransferase-E3-binding protein subcomplex (E2-E3BP) only was decreased by HNE. Dihydrolipoamide dehydrogenase (E3) protected the E2-E3BP subcomplex from HNE inactivation in the absence of the substrates. In the presence of E3 and NADH, when lipoyl groups were reduced, higher inactivation of the E2-E3BP subcomplex by HNE was observed. Purified PDC was protected from HNE-induced inactivation by several thiol compounds including lipoic acid plus [LA-plus; 2-(N,N-dimethylamine)ethylamidolipoate(.)HCl]. Treatment of cultured HepG2 cells with HNE resulted in a significant reduction of PDC and KGDC activities, whereas BCKDC activity decreased to a lesser extent. Lipoyl compounds afforded protection from HNE-induced inhibition of PDC. This protection was higher in the presence of cysteine and reduced glutathione. Cysteine was able to restore PDC activity to some extent after HNE treatment. These findings show that thiols, including lipoic acid, provide protection against HNE-induced inactivation of lipoyl-containing complexes in the mitochondria.  相似文献   

15.
Lung membranes are susceptible to oxygen radicals, formed during inflammation, redox cycling of toxic agents, exposition to ozon etc. Oxygen radicals may modify the beta-adrenergic response. However, at the same time beta-adrenoceptors of the lung are frequently addressed in therapy. We embarked upon this problem by studying the effects of the aldehyde 4-hydroxy-2,3-transnonenal (HNE), one of the major products of lipid peroxidation, on the density of beta-adrenoceptors of rat lung membranes. It is shown, that the physiological important sulfhydryl blocking agent HNE inactivates the beta-adrenoceptors in a time- and concentration dependent (0.5-2.5 mM) way, indicated by a decrease in (-)-[3H]dihydroalprenolol (DHA) binding to lung membranes. Moreover, it is shown that combined treatment of HNE with (-)-isoproterenol (0.5 microM) or 1-alprenolol (0.5-10 nM) does not influence the extent of inactivation of beta-adrenoceptors by HNE. This is in contrast with previous studies, conducted with other, synthetic, sulfhydryl blocking agents, such as N-ethylmaleimide (NEM), suggesting that an other mechanism of inactivation is involved upon HNE treatment.  相似文献   

16.
Parasitic infections caused by Entamoeba histolytica are still major threats against public health, especially in developing countries. Although current therapies exist, the problems associated with parasite resistance and negative side effects make it imperative to search for new therapeutic agents. A systematic scaffold analysis reported herein of a public database containing 474 antiamoebic compounds reveals that benzimidazole is the most active scaffold reported thus far. To gain insights into the antiamoebic activity of novel compounds, the authors report herein the biological activity of 12 compounds, including benzotriazole and indazole derivatives, scaffolds not previously tested against E. histolytica. Compounds with the benzotriazole and indazole scaffolds showed low micromolar activity (IC(50) = 0.304 and 0.339 μM) and are more active than metronidazole, which is the drug of choice used for the treatment of amebiosis. The novel compounds have similar properties to approved drugs. Compounds with novel scaffolds represent promising starting points of an optimization program against E. histolytica.  相似文献   

17.
A series of 3beta-hydroxy steroid analogues possessing a contracted cyclopentane B-ring were prepared based on the initial activity screening of a recently reported naturally occurring marine 5(6-->7)abeo-sterol against Mycobacterium tuberculosis. All of the novel ring B abeo-sterols synthesized showed good inhibitory activity, whereas none of the starting steroids based on the common 3beta-hydroxy-Delta(5)-cholestane nucleus, proved to be active. Therefore, the 5(6-->7)abeo-sterol nucleus present in compounds 3, 5, 7, 9, and 11 represents a novel scaffold for the development of new antitubercular agents.  相似文献   

18.
A series of alpha-ketooxadiazole compounds was prepared and evaluated in vitro as potential inhibitors of human neutrophil elastase (HNE), proteinase-3 (PR-3), and porcine pancreatic elastase (PPE). Several compounds have been found to be very potent, fast, reversible, and selective inhibitors of HNE with Ki values below 100 pM. The highest kon value exceeded 10(7) M(-1) s(-1). Some alpha-ketooxadiazoles were also very effective against PR-3 and PPE with Ki values in the range of 5(-10) nM and 0.1(-2) nM, respectively. The two rings, 1,2,4- and 1,3,4-oxadiazole, are amenable to substitutions, extending the P' side of the inhibitor and allowing additional binding interactions at S' subsites of the enzyme. Nonpeptidic HNE inhibitors containing the oxadiazole heterocycle displayed promising oral bioavailability.  相似文献   

19.
Carnosine (beta-alanyl-L-histidine) and related peptides such as homocarnosine (gamma-amino-butyryl-histidine), balenine beta-alanyl-L-3-methylhistidine) and anserine beta-alanyl-L-1-methylhistidine) are histidine-containing dipeptides (HD) particularly abundant in excitable tissues such as nervous system and skeletal muscle. Although their biochemical role is still unknown, several evidences indicate that these endogenous compounds act as quenchers of reactive and cytotoxic carbonyl species. In this presentation we will review the structural evidences and ex vivo data supporting this hypothesis. We first elucidated the reaction mechanism of carnosine as quencher of alpha, beta-unsaturated aldehydes such as 4-hydroxy-trans-2,3-nonenal (HNE) and acrolein (ACR) and then demonstrated the efficacy of carnosine and related peptides as detoxifying agents of HNE in spontaneously oxidized rat skeletal muscle, by detecting the corresponding HNE-Michael adducts in the crude biological matrix by liquid chromatography/electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS). Finally, we set-up and validated a sensitive, selective and specific LC-ESI-MS/MS method for the determination of HD and of the corresponding HNE-Michael adducts to monitor their profile in physiological (aging) and pathological conditions (diabetes, atherosclerosis) characterized by a carbonyl-mediated degenerative overload. The results obtained, beside to give a contribution to the understanding of the biochemical role of histidine-dipeptides, provide a strong rational to the design of novel derivatives, active as exogenous agents able to detoxify carbonyl compounds.  相似文献   

20.
The interaction of a series of 1,2,5-thiadiazolidin-3-one 1,1 dioxide-based sulfonamides with neutrophil-derived serine proteases was investigated. The nature of the amino acid component, believed to be oriented toward the S' subsites, had a profound effect on enzyme selectivity. This series of compounds were found to be potent, time-dependent inhibitors of human neutrophil elastase (HNE) and were devoid of any inhibitory activity toward neutrophil proteinase 3 (PR 3) and cathepsin G (Cat G). The results of these studies demonstrate that exploitation of differences in the S' subsites of HNE and PR 3 can lead to highly selective inhibitors of HNE.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号