首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Homoserine dehydrogenase of Saccharomyces cerevisiae has been rapidly purified to homogeneity by heat and acid treatments, ammonium sulfate fractionation, and chromatography on Matrex Gel Red A and Q-Sepharose columns. The final preparation migrated as a single entity upon sodium dodecyl sulfate-polyacrylamide gel electrophoresis with a Mr of 40,000. The Mr of the native enzyme was 81,000 as determined by gel filtration, suggesting that the enzyme is composed of two identical subunits. This feature was also confirmed by cross-linking analysis using the bifunctional reagent dimethyl suberimidate. Feedback inhibition by L-methionine and L-threonine was observed using the purified enzyme. The enzyme was markedly stabilized against heat treatment at high salt concentrations. Additions of feedback inhibitors or high concentrations of salts failed to cause any dissociation or aggregation of the enzyme subunits unlike enzymes from other sources such as Rhodospirillum rubrum. The enzyme denatured in 3 M guanidine-HCl was refolded by simple dilution with a concomitant restoration of the activity. Cross-linking analysis of the renaturation process suggested that the formation of the dimer is required for activity expression. Amino acid sequence analysis of peptides obtained by digestion of the enzyme protein with Achromobacter lyticus protease I revealed that several amino acid residues are strictly conserved among homoserine dehydrogenases from S. cerevisiae, Escherichia coli, and Bacillus subtilis.  相似文献   

2.
Succinyl-CoA synthetase from Saccharomyces cerevisiae was partially purified (20-fold) with a yield of 44%. The Michaelis-Menten constants were determined: Km (succinate) = 17 mM; Km (ATP) = 0.13 mM; Km (CoA) = 0.03 mM. The succinyl-CoA synthetase has a molecular weight of about 80000 dalton (as determined by polyacrylamide gradient gel electrophoresis). The pH optimum is at 6.0. During fermentation the activity of succinyl-CoA synthetase is lower than in aerobically grown yeast cells. The presence of succinyl-CoA synthetase in fermenting yeasts may be regarded as an indication for the oxidative formation of succinate. In fermenting yeast cells succinyl-CoA synthetase is repressed by glucose if ammonium sulphate serves as nitrogen source. This catabolite repression is not observed with disaccharides or when amino acids are used as nitrogen source.  相似文献   

3.
The induction of arginase in Saccharomyces cerevisiae   总被引:29,自引:0,他引:29  
  相似文献   

4.
S-Adenosylhomocysteine (SAH) hydrolase was purified 25-fold from bakers' yeast by chemical methods and column chromatography. The purified enzyme could readily synthesize SAH from adenosine and homocysteine, but could hydrolyze only negligible amounts of SAH. The purified enzyme showed no activity towards S-adenosylmethionine, methylthioadenosine, or adenosine. Several nucleotides, sulfhydryl compounds, and ribose could not replace adenosine or homocysteine in the reaction mixture. SAH could be hydrolyzed by SAH hydrolase if commercial adenosine deaminase was included in the reaction mixture. Under these conditions l-homocysteine could act as a product inhibitor. A number of compounds structurally similar to adenosine and homocysteine were found to inhibit synthesis of SAH from adenosine and homocysteine. The strongest inhibitors were adenine, adenosine-3'-monophosphate, adenosine-2'-monophosphate, adenosine diphosphate, adenosine triphosphate, and adenosine-5'-monophosphate. The biosynthetic and hydrolytic activity of SAH hydrolase in yeast cell ghosts was similar to the activity of the enzyme in vitro.  相似文献   

5.
6.
The DNA untwisting enzyme has been partially purified from Saccharomyces cerevisiae. The enzyme exhibits a pH optimum of 7.3 to 7.6 in phosphate buffer, appears to require 0.15 M KCl for activity as determined by a DNA filter-binding assay, and is inhibited by N-ethylmaleimide. Like the untwisting enzymes from other eucaryotic cells, it can remove both positive and negative superhelical turns. A DNA molecule containing a single strand break was shown to be an intermediate in the untwisting reaction. Thermal stabilities of the enzyme from selected conditional lethal mutants defective in DNA synthesis have been examined and were found to be indistinguishable from the wild type enzyme.  相似文献   

7.
Cryptic trehalase from Saccharomyces cerevisiae was purified about 3000-fold. The recovery of 970% of the original "activity" indicated the removal of an inhibitor of the enzyme. Active trehalase, obtained through phosphorylation of cryptic trehalase by cAMP-dependent protein kinase, was isolated by chromatography on DEAE-cellulose. A major phosphorylated protein, with an apparent Mr of 86,000, was detected after SDS-polyacrylamide gel electrophoresis. This protein band correlated exactly with the elution profile of trehalase activity and 32Pi incorporation into the enzyme on DEAE-cellulose chromatography. Partially purified active trehalase showed absolute specificity towards trehalose with an apparent Km of 4.79 X 10(-3) M. Both forms of the enzyme showed an apparent molecular weight of 160,000, by gel filtration. Centrifugation on a glycerol density gradient indicated multiple forms of trehalase-c, with Mr of 320,000, 160,000, and 80,000. After activation of each of these forms by protein kinase, a single form of trehalase-a was observed, with a Mr of 160,000. Trehalase-c appears to be a totally inactive form of the enzyme. The only mechanism of activation seems to be phosphorylation by cAMP-dependent protein kinase. When the protein kinase concentration was varied, at a fixed trehalase-c concentration, a sigmoidal activation plot was obtained. This result suggests the occurrence of multiple forms of cryptic trehalase.  相似文献   

8.
9.
为了提高酵母发酵生产谷胱甘肽的提取率,采用热水直接抽提的方法,并通过正交实验优化及单因素实验优化,得到优化条件:鲜酵母的质量与去离子水体积的比例为1:12;抽提温度90℃;搅拌转速350r/min;当抽提液温度达到90℃就停止抽提,并进行了热水抽提的放大实验。同时在抽提时加氮气保护,防止GSH部分氧化。抽提液离心除菌泥,经截流相对分子质量为10^4的超滤膜超滤后,除去大量杂蛋白,便于后续GSH的精制分离。通过对饱和操作吸附容量及解吸得率的研究,确定强酸型阳离子交换树脂D061为分离介质。  相似文献   

10.
11.
12.
Cytoplasmic elongation factor 1 alpha (EF-1 alpha) was purified to homogeneity from the yeast Saccharomyces cerevisiae using a large-scale procedure. The three steps of purification used were batch adsorption on phosphocellulose, phosphocellulose chromatography and, as the last step, GDP-Sepharose or Biorex column chromatography. The protein is very basic (pI = 9.2) and has an apparent molecular mass of 49 kDa, as determined by polyacrylamide gel electrophoresis using denaturing conditions. It is one of the most abundant proteins in yeast (about 5% of total soluble protein), as shown by two-dimensional gel electrophoresis and by immunological titration. A strong immunological and structural homology was found between yeast EF-1 alpha and elongation factors from other sources. Common immunological features were found between yeast and wheat germ EF-1 alpha. Tryptic hydrolysis of yeast EF-1 alpha in the presence of 25% glycerol generated a large trypsin-resistant polypeptide (Mr = 43,000) which had the same NH2-terminal sequence as the proteolyzed product from rabbit reticulocyte, Artemia salina EF-1 alpha and Escherichia coli EF-Tu. Completed DNA sequence determination of one structural gene for yeast EF-1 alpha confirmed a remarkable conservation of several protein sequence domains in yeast and animal EF-1 alpha (Cottrelle, P., Thiele, D., Price, V., Memet, S., Micouin, J.Y., Marck, C., Buhler, J.M. Sentenac, A., and Fromageot, P. (1985) J. Biol. Chem. 260, 3090-3096).  相似文献   

13.
14.
The ATP-independent type I and the ATP-dependent type II DNA topoisomerase of the yeast Saccharomyces cerevisiae have been purified to near homogeneity, and the purification procedures are reported. Both purified topoisomerases are single subunit enzymes with monomer weights of Mr = 90,000 and 150,000 for the type I and type II enzyme, respectively. Sedimentation and gel filtration data suggest that the type I enzyme is monomeric and the type II enzyme is dimeric. Similar to other purified eukaryotic topoisomerases, the yeast type I enzyme does not require a divalent cation for activity, but is stimulated 10-20-fold in the presence of 7-10 mM Mg(II) or Ca(II). Mn(II) is about 25% as efficient as Mg(II) in this stimulation but Co(II) is inhibitory. The yeast type II topoisomerase has an absolute requirement for a divalent cation: Mg(II) is the most effective, whereas Mn(II), Ca(II), or Co(II) supports the reaction to a lesser extent. The type II enzyme also requires ATP or dATP; the nonhydrolyzable ATP analogues adenylyl imidodiphosphate and adenylyl (beta,gamma-methylene)diphosphonate are potent inhibitors. Both yeast topoisomerases are completely inhibited by N-ethylmaleimide at 0.5 mM. In addition, the type II enzyme, but not the type I enzyme, is inhibited to various extents by coumermycin, ethidium, and berenil. Both topoisomerases are nuclear enzymes; no topoisomerase specific to mitochondria has been detected.  相似文献   

15.
Five chromatographically distinct apurinic endonucleases (D1, D2, D3, D4, and E) were purified from Saccharomyces cerevisiae 234, 122, 1,000, 4,550, and 5,490-fold, respectively. All appeared to be class II apurinic endonucleases and were not contaminated with exonuclease or nonspecific endonuclease activities under the reaction conditions used. All had similar pH optima, but endonucleases D4 and E showed higher salt requirements and endonuclease D4 had a lower Mg2+ requirement for optimal activity than the other endonucleases. Endonuclease D4 also nicked OsO4-treated DNA. The molecular weights of the apurinic endonucleases as determined by glycerol gradient sedimentation analysis were 37,000, 49,000, and 10,000, for endonucleases E, D4, and D2, respectively. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of samples of radioiodinated endonuclease E showed the presence of two proteins.  相似文献   

16.
A partially purified lipoxygenase extract was obtained from the yeast Saccharomyces cerevisiae by precipitation with solid (NH4)SO4 at 20% to 80% saturation. The enzyme had two pH optima, at pH 8.0 and 10.0, with respective apparent K m values of 13 and 9.5 m. At both pH optima, the lipoxygenase demonstrated highest substrate specificity towards linoleic acid, followed by linolenic acid; although the enzyme had less specificity towards mono-linolein than di-linolein at pH 8.0, the reverse was true at pH 10.0.  相似文献   

17.
Heterologous production of the heterodimeric penicillin G amidase (PAC) from Providencia rettgeri was optimized in Saccharomyces cerevisiae. Several factors, including the effect of different growth and induction conditions, were identified to be critical for the enzyme overproduction and secretion. The PAC yield was significantly increased by more than 500-fold compared to that obtained in the native bacterium, and the recombinant enzyme was almost entirely secreted. Electrophoretic characterization of the secreted rPAC(Pr), which was purified over 20-fold by a combination of hydrophobic interaction and ion-exchange chromatography, demonstrated a microheterogeneity of the recombinant enzyme. The recombinant PAC(Pr) was further characterized in terms of specific activity, pH, and temperature profiles and kinetic parameters. The data presented here suggest that by overexpressing rPAC(Pr) in S.cerevisiae and purifying secreted enzyme from culture medium one can readily obtain a large amount of an alternative source of penicillin amidase with properties comparable to that of todays main industrial source of enzyme.  相似文献   

18.
Glycolate oxidase from spinach has been expressed in Saccharomyces cerevisiae. The active enzyme was purified to near-homogeneity (purification factor approximately 1400-fold) by means of hydroxyapatite and anion-exchange chromatography. The purified glycolate oxidase is nonfluorescent and has absorbance peaks at 448 (epsilon = 9200 M-1 cm-1) and 346 nm in 0.1 M phosphate buffer, pH 8.3. The large bathochromic shift of the near-UV band indicates that the N(3) position is deprotonated at pH 8.3. A pH titration revealed that the pK of the N(3) is shifted from 10.3 in free flavin to 6.4 in glycolate oxidase. Glycolate oxidase is competitively inhibited by oxalate with a Kd of 0.24 mM at 4 degrees C in 0.1 M phosphate buffer, pH 8.3. Three pieces of evidence demonstrate that glycolate oxidase stabilizes a negative charge at the N(1)-C(2 = O) locus: the enzyme forms a tight sulfite complex with a Kd of 2.7 x 10(-7) M and stabilizes the anionic flavosemiquinone and the benzoquinoid form of 8-mercapto-FMN. Steady-state analysis at pH 8.3, 4 degrees C, yielded a Km = 1 x 10(-3) M for glycolate and Km = 2.1 x 10(-4) M for oxygen. The turnover number has been determined to be 20 s-1. Stopped-flow studies of the reductive (k = 25 s-1) and oxidative (k = 8.5 x 10(4) M-1 s-1) half-reactions have identified the reduction of glycolate oxidase to be the rate-limiting step.  相似文献   

19.
Factor XIII is the terminal enzyme of the clotting cascade. A cDNA sequence encoding human placental factor XIII was expressed in Saccharomyces cerevisiae with the yeast ADH2-4c promoter. Expression levels were a strong function of the noncoding flanking DNA content of the construction. When the terminal 3'-flanking noncoding DNA was removed, expression increased approximately 50-fold. The protein was produced in quantity by high-yield fermentation and purified to homogeneity. The recombinant protein was cleaved by thrombin at the same activation site as purified human placental FXIII and exhibited 100% enzymatic activity. At high thrombin concentrations rFXIIIa was cleaved into inactive 54- and 25-kDa polypeptides. The identity of these cleavage sites and the blocked N-terminus to that of the human protein was revealed by amino acid microsequencing. A time course of thrombin activation was performed and the relative distribution of the thrombin-cleaved subunits to the uncleaved zymogen subunits determined; the results were consistent with the half of the sites catalytic model for transglutaminase activity proposed by Chung et al. (Chung, S. I., Lewis, M. S., & Folk, J. E. (1974) J. Biol. Chem. 249, 940-950, 1974) and Hornyak et al. (Hornyak, T. J., Bishop, P. D., & Shafer, J. A. (1989) Biochemistry 28, 7326-7332). Equilibrium and velocity sedimentation analysis indicated that rFXIII exists as a 166-kDa nondissociating dimer that behaves as a compact particle of 8.02 S. Thus, all of the properties of rFXIII thus far examined are consistent with those reported for human platelet and placental FXIII.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
CTP-phosphatidic acid cytidyltransferase catalyzes the formation of CDP-diglyceride from CTP and phosphatidic acid. The enzyme was solubilized from crude mitochondrial membrane by treatment with digitonin and was further purified by chromatography on DEAE-Sephadex, quaternary aminoethyl (QAE) Sephadex, and Sepharose 6B columns. At this stage the enzyme, enriched 550-fold over crude cell homogenate, still remains associated with phospholipid and has an estimated approximate molecular weight of 400,000 on the basis of gel filtration chromatography. Sodium dodecyl sulfate polyacrylamide gel electrophoresis of the 550-fold enriched enzyme yielded two major protein bands having molecular weights of 45,000 and 19,000. The enzyme exhibits an absolute dependence on Triton X-100, a sharp Mg2+ dependence with an optimum at 20 mM, and a pH optimum of 6.5 for activity. The product of the CTP-phosphatidic acid cytidyl-transferase reaction has been isolated and identified as CDP-diglyceride, both for the crude enzyme preparation as well as for the 550-fold enriched enzyme. CTP-phosphatidic acid cytidyltransferase is capable of catalyzing the reverse reaction in the presence of pyrophosphate, utilizing CDP-diglyceride as substrate. The product of the reverse reaction was identified as CTP. Kinetic analysis of the behavior of CTP-phosphatidic acid cytidyltransferase was performed at three different stages of its purification. Initial analysis of the data yielded biphasic behavior in double reciprocal plots with respect to both substrates. Hill plots of the data indicated the presence of negative cooperativity. A detailed analysis of the kinetic behavior was performed on the enzyme purified 550-fold. The data suggest a mechanism involving two distinct cycles of catalysis, responsive to homotropic modification, with different affinities for both substrates. Further analysis of the kinetic behavior in the presence of inhibitors (dCTP and PPi) yielded a reaction order for the entrance of substrates and departure of products from the reaction cycles. The high affinity site catalyzes the reaction via a double displacement mechanism and is the predominant form at low concentrations of substrates. At high concentrations of substrates the low affinity site starts contributing significantly to the reaction velocity with an ordered single displacement mechanism. In each case CTP is the first substrate to attach and PPi is the first product released.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号