共查询到20条相似文献,搜索用时 113 毫秒
1.
M细胞是肠道一种免疫细胞,同时,也是一种特殊的抗原运转细胞。M细胞具有特殊的形态结构特点,与肠黏膜免疫功能密切相关。目前认为,位于肠淋巴滤泡上皮中特化的M细胞是大多数黏膜病原体侵入机体的靶细胞,它能特异性的结合肠道大分子物质及微生物,并将其摄取、转运至位于其下的APC进行识别、处理,并激活T、B淋巴细胞,继而激发肠道黏膜免疫应答作用。本研究就目前国内外学者所做M细胞在肠黏膜免疫中作用的研究进展做一综述。 相似文献
2.
结核病是全球重要的传染性疾病之一,在全球范围内保持着较高的发病率和死亡率。卡介苗是目前临床上唯一应用的结核疫苗,虽然对儿童有较好的保护作用,但对成人的免疫保护效果并不明显。研发新的结核疫苗对于结核病的防控具有重要的意义。由于结核病的致病菌结核分枝杆菌主要通过呼吸道传播,机体的黏膜成为抵御结核分枝杆菌的第一道防线。设计稳定高效的抗结核黏膜免疫疫苗是目前结核疫苗研究的新方向之一。选择合适的黏膜免疫途径、佐剂及抗原递送系统是黏膜疫苗研发成功的关键。本文对抗结核分枝杆菌的黏膜免疫应答作简短的概述,并重点阐明黏膜免疫在结核疫苗研发中的研究进展。 相似文献
3.
肿瘤抗原可以诱导机体的免疫应答,是肿瘤的免疫治疗中多肽疫苗的分子基础,近十年来发展起来的肿瘤疫苗筛选方法,利用肿瘤抗原特异性T细胞或抗体识别肿瘤抗原,为临床肿瘤免疫治疗提供了大量备选抗原分子。文中总结了肿瘤抗原的种类,及迄今几乎所有被证明的含有T细胞识别表位的抗原分子及其血清学反应性,为临床肿瘤疫苗的选择提供了依据。 相似文献
4.
5.
M细胞—启动粘膜免疫应答的人口 总被引:1,自引:0,他引:1
粘膜免疫系统是机体免疫系统的重要组成部分,外来抗原可选择性的M细胞相结合并被内吞入M细胞以诱导粘膜免疫应答或造成机体的感染。本文介绍了M细胞的结构、分化来源、生物学功能、与微生物感染的关系、及其在粘膜疫苗、药物传送中的应用。 相似文献
6.
7.
乳酸乳球菌作为黏膜免疫活载体疫苗传递抗原的研究进展 总被引:7,自引:2,他引:7
乳酸菌是人和动物肠道内的常见细菌,被公认为安全级(generally recognized as safe,GRAS)微生物。近年来,对于乳酸菌作为宿主菌表达外源蛋白或抗原的研究取得了一定进展。乳酸乳球菌(Lactococcus lactis)是乳酸菌的代表菌种,以其生长迅速、易于操作等优点成为表达外源抗原,作为黏膜免疫活载体疫苗的理想菌株。随着对乳酸乳球菌基因工程的研究逐渐深入,已发展了一系列组成型和诱导型乳酸乳球菌表达系统以及蛋白定位系统。破伤风毒素片段C、布氏杆菌L7/L12蛋白等多种病原微生物抗原已成功在乳酸乳球菌中表达,并已证明部分重组乳酸乳球菌作为黏膜免疫疫苗可以同时刺激局部黏膜免疫应答和系统免疫应答。目前,如何使活载体乳酸乳球菌以最佳方式向黏膜免疫系统提呈抗原继而诱导有效免疫反应是该领域的研究热点,也是巨大挑战。实现外源抗原在乳酸乳球菌中的准确定位及与细胞因子的共表达是未来研究的重要方向之一。乳酸乳球菌作为黏膜免疫活载体疫苗传递外源抗原具有广阔的应用前景。 相似文献
8.
结核分枝杆菌主要是通过呼吸道传播,而机体的呼吸道黏膜免疫又是抵御从黏膜途径入侵的外来物质的第一道防线。因此,诱导有效的黏膜免疫应答对结核分枝杆菌感染的预防和治疗性疫苗的研制具有重要的价值。 相似文献
9.
10.
11.
The development of safe, immunogenic and protective cholera vaccine candidates makes possible their use as a versatile antigen
delivery platform. Foreign antigens can be delivered to the immune system with cholera vaccines by expressing heterologous
antigens in live attenuated vectors, as fusion proteins with cholera toxin subunits combined with inactivated Vibrio cholerae whole cells or by exposing them on the surface of V. cholerae ghosts. Progress in our understanding of the genes expressed by V. cholerae during infection creates unprecedented opportunities to develop an improved generation of vaccine vectors to induce immune
protection against a broad range of pathogenic organisms. 相似文献
12.
BACKGROUND: Synthetic vectors such as polymers have the potential to reduce the safety problems associated with viral vectors; however, their low transfection efficiency limits their clinical utility. To study the critical steps involved in an efficient transgene expression, there is a need for creative approaches that allow a systematic correlation between gene carrier structure and properties necessary for successful gene transfer. Using recombinant techniques a prototype vector comprised of tandem repeating units fused to a targeting moiety was biosynthesized to mediate gene transfer in mammalian cell lines. The carrier was designed to have the structure of (KHKHKHKHKK)6-FGF2 where lysine (K) residues would allow complexation with plasmid DNA, basic fibroblast growth factor (FGF2) to target cells over-expressing FGF2 receptors (FGFR), and histidine (H) residues to facilitate escape from the endosomal compartments. METHODS: The gene carrier was biosynthesized in E. coli, purified using a Ni-NTA column, characterized, complexed with pDNA, and the complexes were used to transfect NIH 3T3, T-47D and COS-1 mammalian cell types known to express FGFR. RESULTS: Results demonstrate the successful cloning and expression of the gene carrier with over 95% purity. The molecular weight of the gene carrier was determined by MALDI-TOF to be 27 402. Amino acid content analysis and Western blot confirmed the expression of the gene carrier in E. coli. The vector was able to condense pDNA, induce cell proliferation in NIH 3T3 fibroblasts, and mediate transgene expression in NIH 3T3, T-47D and COS-1 mammalian cell types. CONCLUSION: Genetic engineering techniques show promise for systematic investigation of structure-activity relationships of non-viral gene delivery vectors. 相似文献
13.
红细胞伪装纳米颗粒是一种以红细胞或红细胞膜纳米囊泡为载体在体内递送药物、酶、多肽和抗原等物质的系统,具有生物相容性好、循环周期长、靶向性强等优势。本文从红细胞载体的种类、发展历程、递送策略应用以及其局限性和未来的挑战等方面进行了详细阐述,并展望了其未来的发展方向。 相似文献
14.
Oral vaccination requires an antigen delivery vehicle to protect the antigen and to enhance translocation of the antigen to the mucosa-associated lymphoid tissue. A variety of antigen delivery vehicles including liposomes have been studied for mucosal immunization. The advantages of liposome formulations are their particulate form and the ability to accommodate immunomodulators and targeting molecules in the same package. Many conventional liposomes are variably unstable in acids, pancreatic juice and bile. Nevertheless, carefully designed liposomes have demonstrated an impressive efficacy in inducing mucosal IgA responses, compared to free antigens and other delivery vehicles. However, liposomes as an oral vaccine vehicle are not yet optimized. To design liposomes that are stable in the harsh intestinal environment and are efficiently taken up by the M cells remains a challenge. This review summarizes recent research efforts using liposomes as an antigen carrier for oral vaccines with practical attention to liposome designs and interaction with the M cells. 相似文献
15.
Anshita Gupta Chanchal Deep Kaur Shailendra Saraf 《Journal of receptor and signal transduction research》2017,37(3):314-323
Targeted drug delivery through folate receptor (FR) has emerged as a most biocompatible, target oriented, and non-immunogenic cargoes for the delivery of anticancer drugs. FRs are highly overexpressed in many tumor cells (like ovarian, lung, breast, kidney, brain, endometrial, and colon cancer), and targeting them through conjugates bearing specific ligand with encapsulated nanodrug moiety is undoubtedly, a promising approach toward tumor targeting. Folate, being an endogenous ligand, can be exploited well to affect various cellular events occurring during the progress of tumor, in a more natural and definite way. Thus, the aim of the review lies in summarizing the advancements taken place in the drug delivery system of different therapeutics through FRs and to refine its role as an endogenous ligand, in targeting of synthetic as well as natural bioactives. The review also provides an update on the patents received on the folate-based drug delivery system. 相似文献
16.
Carcinoembryonic antigen as a target for cancer vaccines 总被引:2,自引:0,他引:2
17.
There has been a recent interest in using IL-15 to enhance antitumor activity in several models because of its ability to
stimulate CD8+ T cell expansion, inhibit apoptosis and promote memory T cell survival and maintenance. Previously, we reported that C6VL
tumor lysate-pulsed dendritic cell vaccines significantly enhanced the survival of tumor-bearing mice by stimulating a potent
tumor-specific CD8+ T cell response. In this study, we determined whether IL-15 used as immunologic adjuvant would augment vaccine-primed CD8+ T cell immunity against C6VL and further improve the survival of tumor-bearing mice. We report that IL-15 given after C6VL
lysate-pulsed dendritic cell vaccines stimulated local and systemic expansion of NK, NKT and CD8+ CD44hi T cells. IL-15 did not, however, augment innate or cellular responses against the tumor. T cells from mice infused with IL-15
following vaccination did not secrete increased levels of tumor-specific TNF-α or IFN-γ or have enhanced C6VL-specific CTL
activity compared to T cells from recipients of the vaccine alone. Lastly, IL-15 did not enhance the survival of tumor-bearing
vaccinated mice. Thus, while activated- and memory-phenotype CD8+ T cells were dramatically expanded by IL-15 infusion, vaccine-primed CD8+ T cell specific for C6VL were not significantly expanded. This is the first account of using IL-15 as an adjuvant in a therapeutic
model of active immunotherapy where there was not a preexisting pool of tumor-specific CD8+ T cells. Our results contrast the recent studies where IL-15 was successfully used to augment tumor-reactivity of adoptively
transferred transgenic CD8+ T cells. This suggests that the adjuvant potential of IL-15 may be greatest in settings where it can augment the number and
activity of preexisting tumor-specific CD8+ T cells. 相似文献
18.
19.
20.
肠相关淋巴组织在防御病毒、细菌、寄生虫等有害物质入侵中发挥着重要作用,是消化道屏障的组成部分,其中肠道树突状细胞尤为重要,作为目前所知的机体内功能最强的专职性抗原呈递细胞,在肠道内,树突状细胞不但能对病原菌产生免疫应答,还能对肠腔内的正常菌群和各种食物蛋白产生免疫耐受,因此了解树突状细胞的功能及相关作用机制有着重要意义.现就对树突状细胞的生物学特性,以及其在肠道免疫中的作用进行综述. 相似文献