首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background  

It is now believed that in the origin of life, proteins should have been "invented" in an RNA world. However, due to the complexity of a possible RNA-based proto-translation system, this evolving process seems quite complicated and the associated scenario remains very blurry. Considering that RNA can bind amino acids with specificity, it has been reasonably supposed that initial peptides might have been synthesized on "RNA templates" containing multiple amino acid binding sites. This "Direct RNA Template (DRT)" mechanism is attractive because it should be the simplest mechanism for RNA to synthesize peptides, thus very likely to have been adopted initially in the RNA world. Then, how this mechanism could develop into a proto-translation system mechanism is an interesting problem.  相似文献   

2.
3.
Although the "RNA-world" theory, or the RNA-first theory is renowned for a promising theory of biogenesis, it is also possible that both RNAs and proteins have coevolved forming a stable metabolic complex from the very beginning. I investigated this possibility assuming that the genetic information flowed symmetrically in the era of the origin of life, i.e. the primitive translation machinery worked in both directions (from RNA to protein and from protein to RNA). According to this RNA/protein symmetry theory, the genetic information would have come from existing cellular proteins via reverse translation. This process would have been completed in a short period of time without searching an enormous RNA sequence space. Furthermore, reverse translation would have ensured biological continuity; proteins that were essential for cellular metabolism would have been utilized in the same way as before the protein sequence information would have been transferred into the RNA sequences. I also propose a possible mechanism for the process of reverse translation. The reverse translation would proceed in the 3' to 5' direction using a set of at least 20 reverse transfer RNAs (rtRNAs) that can recognize their specific amino acid residue and carry their corresponding codon. A source of genetic information would be a primary sequence of a protein molecule. Several basic steps of reverse translation were demonstrated using rtRNA(Arg).  相似文献   

4.
5.
6.
A model of chromatin-dependent DNA replication sequences was developed on the previously reported "decondensation units" hypothesis and its kinetic properties were examined by way of calculating various numerical indices using a Monte Carlo procedure. The model has much in common with the previous one but a fundamental difference is that the unit is assumed to consist of linearly arranged H-, D-, A- and S-zones each containing genes of different functional categories which are called H-, D-, A- and S-genes, respectively. The units are decondensed by the action of D-factors, i.e. decondensation factors, from H-zone to the end of S-zone and the genes in decondensed regions release signals to produce housekeeping enzymes, D-factors, A-factors and S-factors. These products are stored and at the same time degraded. A-factors activate replication origins in the decondensed regions and S-factors induce DNA synthesis at the activated origins. Replicated DNA is recondensed and gene activities are shut down in the recondensed chromatin. The factors are produced under the control of chromosome cycle and in turn affect chromosomes. Thus, dual control mechanism operates as Mazia and Prescott have argued. Biochemical and cytogenetic basis of this model was reviewed briefly and some results of simulation presented which include DNA synthesis rate vs. DNA content relationships. An outstanding characteristic of the model is the constancy of cellular state in A-subphase located in the late G1.  相似文献   

7.
8.
The secondary structures of hepatitis C virus (HCV) RNA and the cellular proteins that bind to them are important for modulating both translation and RNA replication. However, the sets of RNA-binding proteins involved in the regulation of HCV translation, replication and encapsidation remain unknown. Here, we identified RNA binding motif protein 24 (RBM24) as a host factor participated in HCV translation and replication. Knockdown of RBM24 reduced HCV propagation in Huh7.5.1 cells. An enhanced translation and delayed RNA synthesis during the early phase of infection was observed in RBM24 silencing cells. However, both overexpression of RBM24 and recombinant human RBM24 protein suppressed HCV IRES-mediated translation. Further analysis revealed that the assembly of the 80S ribosome on the HCV IRES was interrupted by RBM24 protein through binding to the 5′-UTR. RBM24 could also interact with HCV Core and enhance the interaction of Core and 5′-UTR, which suppresses the expression of HCV. Moreover, RBM24 enhanced the interaction between the 5′- and 3′-UTRs in the HCV genome, which probably explained its requirement in HCV genome replication. Therefore, RBM24 is a novel host factor involved in HCV replication and may function at the switch from translation to replication.  相似文献   

9.
We designed a new approach for selection of translation enhancer sequences that enables efficient protein synthesis in cell-free systems. The selection is based on a gel shift assay of a messenger RNA (mRNA)–protein fusion product that is synthesized in a cell-free translation system using an mRNA display method. A library of randomized 20-nt-long sequences, with all possible combinations of the four nucleotides, upstream of a coding region was screened by successive rounds of screening in which the translation time of the succeeding round was reduced compared with the previous round. An efficient translation enhancer sequence capable of more rapid initiation of cell-free protein synthesis, with a minimal translation time of 5 min, than a natural longer enhancer sequence (Xenopus β-globin 5′UTR) was selected using rabbit reticulocyte extract as a model cell-free translation system. Furthermore, a successful screening of cap-independent translation enhancer sequence and a significant sequence similarity of the selected candidates validated the efficiency of the combined mRNA display and gel shift assay method for the rapid development of advanced cell-free translation systems.  相似文献   

10.
Cells transformed by Polyoma virus (Py) can undergo a high rate of excision or amplification of integrated viral DNA sequences, and these phenomena require the presence of homology (i.e., repeats) within the viral insertion as well as a functional viral large T antigen (T-Ag). To determine whether the main role of large T-Ag in excision and amplification was replicative or recombination-promoting, we studied transformed rat cell lines containing tandem insertions of a ts-a Py molecule (encoding a thermolabile large T-Ag) with a deletion of the origin of viral DNA replication. Culturing of these cells at the temperature permissive for large T-Ag function did not result in any detectable excision or amplification of integrated Py sequences. We then introduced into origin-defective lines a recombinant plasmid containing the viral origin of replication and the gene coding for resistance to the antibiotic G418. All G418-resistant clones analyzed readily amplified the integrated plasmid molecules when grown under conditions permissive for large T-Ag function, showing that these cells produced viral large T-Ag capable of promoting amplification in trans of DNA sequences containing the Py origin. These observations strongly suggest that Polyoma large T antigen promotes excision or amplification of viral DNA by initiating replication at the integrated origin, providing a favorable substrate for subsequent recombination.  相似文献   

11.
To study the relationship between translation and replication of encephalomyocarditisvirus (EMCV) RNA, we established a cell-free RNA replication system by employing a human cell extracts-based in vitro translation system. In this system, a cis-EMCV RNA replicon encoding the Renilla luciferase (R-luc) or GFP and the viral regulatory proteins efficiently replicated with simultaneous translation of the encoded protein. To examine how translation of the replicon RNA, but not the translated products, affected replication, a trans-EMCV RNA replicon encoding R-luc and the RNA replication elements was next constructed. The trans-replicon RNA replicated only in the presence of the regulatory proteins pre-expressed in trans. Incubation with cycloheximide, puromycin or a dominant-negative eukaryotic translation initiation factor 4A following expression of the regulatory proteins almost completely inhibited not only translation of the trans-replicon RNA but also replication of the RNA, suggesting that EMCV RNA translation promotes replication of the RNA. In conclusion, the cell-free RNA replication systems should become useful tools for the study of the viral RNA replication.  相似文献   

12.
Yi G  Gopinath K  Kao CC 《Journal of virology》2007,81(4):1601-1609
Differential expression of viral replication proteins is essential for successful infection. We report here that overexpression of the brome mosaic virus (BMV) 1a protein can repress viral RNA replication in a dosage-dependent manner. Using RNA replication-incompetent reporter constructs, repression of translation from BMV RNA1 and RNA2 was observed, suggesting that the effect on translation of the BMV RNA replication proteins is responsible for the decrease in RNA levels. Furthermore, repression of translation by 1a required the B box in the 5'-untranslated region (5' UTR); BMV RNA3 that lacks a B box in its 5' UTR is not subject to 1a-mediated translational inhibition. Mutations in either the methyltransferase or the helicase-like domains of 1a reduced the repression of replication and translation. These results suggest that in addition to its known functions in BMV RNA synthesis, 1a also regulates viral gene expression.  相似文献   

13.
The RNA of satellite tobacco necrosis virus (STNV) is a monocistronic messenger that lacks both a 5′ cap and a 3′ poly(A) tail. The STNV trailer contains an autonomous translational enhancer domain (TED) that promotes translation in vitro by more than one order of magnitude when combined with the 5′-terminal 173 nt of STNV RNA. We now show that the responsible sequence within the 5′ region maps to the first 38 nt of the STNV RNA. Mutational analysis indicated that the primary sequence of the STNV 5′ 38 nt and TED is important for translation stimulation in vitro, but did not reveal a role for the complementarity between the two. Translation of chimeric STNV-cat RNAs in tobacco protoplasts showed that TED promotes translation in vivo of RNAs lacking a cap and/or a poly(A) tail. Similar to in vitro, TED-dependent translation in tobacco was stimulated further by the STNV 5′ 38 nt.  相似文献   

14.
RNA 3 of alfalfa mosaic virus (AIMV) encodes the movement protein P3 and the viral coat protein which is translated from the subgenomic RNA 4. The 5'-leader sequences of RNA 3 of AIMV strains S, A, and Y differ in length from 314 to 392 nucleotides and contain a variable number of internal control regions of type 2 (ICR2 motifs) each located in a 27 nt repeat. Infectious cDNA clones were used to exchange the leader sequences of the three strains. This revealed that the leader sequence controls the specific ratio in which RNAs 3 and 4 are synthesized for each strain. In addition, it specifies strain specific differences in the kinetics of P3 accumulation in plants. Subsequent deletion analysis revealed that a 5'-sequence of 112 nt containing one ICR2 motif was sufficient for a 10 to 20% level of RNA 3 accumulation in protoplasts and a delayed accumulation in plants. An additional leader sequence of maximally 114 nt, containing two ICR2 motifs, was required to permit wildtype levels of RNA 3 accumulation. The effect of deletions in the leader sequence on P3 synthesis in vitro and in vivo was investigated.  相似文献   

15.
Origins of translation: the hypothesis of permanently attached adaptors   总被引:1,自引:0,他引:1  
S Tyagi 《Origins of life》1981,11(4):343-351
A mechanism for prebiotic translation is proposed in which primeval transfer-RNA (adaptors) are assumed to be permanently associated with messenger nucleic acid molecules. Residual 'fossil' evidences are found to be present within the base sequences of contemporary tRNAs, suggesting the existence of inter-primal-tRNA interactions necessary for the mechanism. The structure of proposed primal-tRNA is such that it can not only choose its own amino acid in the absence of aminoacyl synthetase, but can also associate nonspecifically with adjacent primal-tRNA molecules attached to the neighbouring codons. Such associations can give rise, through cooperative binding between message and adaptors to the 'static template surfaces' which can direct translation of nucleotide sequences into those of amino acids. The origins of ribosomes and contemporary genetic code are suggested by this hypothesis. Proposed structures and processes are thermodynamically compatible. The approximate date of occurrence of the proposed system is calculated, which is consistent with the period of occurrence of the earliest organism with ribosomes.  相似文献   

16.
17.
The macronuclear rRNA genes (rDNA) in the ciliate Tetrahymena thermophila are normally palindromic linear replicons, containing two copies of the replication origin region in inverted orientation. A circular plasmid containing a single Tetrahymena rRNA gene (one half palindrome) joined to a tandem repeat of a 1.9-kilobase (kb) rDNA segment encompassing the rDNA replication origin and known replication control elements was used to transform Tetrahymena macronuclei by microinjection. This plasmid was shown previously to have a replication advantage over the rDNA allele of the recipient cell strain (G.-L. Yu and E. H. Blackburn, Proc. Natl. Acad. Sci. USA 86:8487-8491, 1990). During vegetative cell divisions, the circular and palindromic rDNAs were rapidly replaced by novel, successively longer linear rDNAs that eventually contained up to 30 tandem 1.9-kb repeats, resulting from homologous but unequal crossovers between the 1.9-kb repeats. We present evidence to show that increasing the number of copies of the replication control regions increases the replicative advantage of the rDNA, the first such situation for a cellular nuclear replicon in a eucaryote.  相似文献   

18.
The simple repeating homopurine/homopyrimidine sequences dispersed throughout many eukaryotic genomes are known to form triple helical structures comprising three-stranded and single-stranded DNA. Several lines of evidence suggest that these structures influence DNA replication in cells. Homopurine/homopyrimidine sequences cloned into simian virus 40 (SV40) or SV40 origin-containing plasmids caused a reduced rate of DNA synthesis due to the pausing of replication forks. More prominent arrests were observed in in vitro experiments using single-stranded and double-stranded DNA with triplex-forming sequences. Nucleotides unable to form triplexes when present in the template DNA or when incorporated into the nascent strand prevented termination. Similarly, mutations destroying the triplex potential did not cause arrest while compensatory mutations restoring triplex potential restored it. These and other observations from a number of laboratories indicating that homopurine/homopyrimidine sequences act as arrest signals in vitro and as pause sites in vivo during replication fork movement suggest that these naturally occurring sequences play a regulatory role in DNA replication and gene amplification.  相似文献   

19.
ABSTRACT: The problems associated with the RNA world hypothesis are well known. In the following I discuss some of these difficulties, some of the alternative hypotheses that have been proposed, and some of the problems with these alternative models. From a biosynthetic - as well as, arguably, evolutionary - perspective, DNA is a modified RNA, and so the chickenand- egg dilemma of "which came first?" boils down to a choice between RNA and protein. This is not just a question of cause and effect, but also one of statistical likelihood, as the chance of two such different types of macromolecule arising simultaneously would appear unlikely. The RNA world hypothesis is an example of a 'top down' (or should it be 'present back'?) approach to early evolution: how can we simplify modern biological systems to give a plausible evolutionary pathway that preserves continuity of function? The discovery that RNA possesses catalytic ability provides a potential solution: a single macromolecule could have originally carried out both replication and catalysis. RNA - which constitutes the genome of RNA viruses, and catalyzes peptide synthesis on the ribosome - could have been both the chicken and the egg! However, the following objections have been raised to the RNA world hypothesis: (i) RNA is too complex a molecule to have arisen prebiotically; (ii) RNA is inherently unstable; (iii) catalysis is a relatively rare property of long RNA sequences only; and (iv) the catalytic repertoire of RNA is too limited. I will offer some possible responses to these objections in the light of work by our and other labs. Finally, I will critically discuss an alternative theory to the RNA world hypothesis known as 'proteins first', which holds that proteins either preceded RNA in evolution, or - at the very least - that proteins and RNA coevolved. I will argue that, while theoretically possible, such a hypothesis is probably unprovable, and that the RNA world hypothesis, although far from perfect or complete, is the best we currently have to help understand the backstory to contemporary biology. Reviewers This article was reviewed by Eugene Koonin, Anthony Poole and Michael Yarus (nominated by Laura Landweber).  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号