首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 514 毫秒
1.
Abstract Highly purified preparations of inner, i.e. cytoplasmic and intracytoplasmic, membranes and outer membranes were isolated from Nitrobacter hamburgensis strain X14 by sucrose density-gradient centrifugation of cell-free extracts. The two membrane fractions differed markedly in morphology, density, and protein composition as determined by polyacrylamide gel electrophoresis. The inner membrane fraction was enriched in NADH oxidase and nitrite oxidase activity. It contained four major protein bands of apparent M rs of 28 000, 32 000, 70 000, and 116000. The outer membrane fraction was characterized by the presence of 2-keto-3-deoxyoctonate and contained two major proteins of apparent M rs of 13 000 and 50 000. There was no evidence for differences between cytoplasmic and intracytoplasmic membranes.  相似文献   

2.
J Aamand  T Ahl    E Spieck 《Applied microbiology》1996,62(7):2352-2355
Three monoclonal antibodies (MAbs) against nitrite oxidoreductase (NOR) of Nitrobacter hamburgensis were produced. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis and immunoblotting analysis of the purified enzyme showed that the MAbs named Hyb 153.1 and Hyb 153.3 both recognized a protein with a molecular mass of 64,000 Da, while Hyb 153.2 recognized a protein with a molecular mass of 115,000 Da. The molecular masses of these proteins are in the same range as those of the proteins of the alpha (115,000-Da) or beta (65,000-Da) subunit of the NOR. By using the antibodies, the amount of NOR was shown to be dependent on the growth conditions. The highest level of NOR was observed in N. hamburgensis when cells were growing mixotrophically. Analysis of whole-cell extracts of N. hamburgensis, N. winogradskyi, and N. vulgaris indicated serological homology of the NORs from these species of the genus Nitrobacter. The immunological analysis enables detection of the key enzyme of the genus Nitrobacter.  相似文献   

3.
Nitrobacter winogradskyi was grown autotrophically on carbon dioxide and nitrite, mixotrophically on pyruvate and nitrite, and heterotrophically on acetate and pyruvate.N. agilis was grown autotrophically on carbon dioxide and nitrite and heterotrophically on pyruvate, acetate, and yeast extract-peptone. Antisera were then prepared against these cells. Strong cross-reactions occurred between all antisera raised againstNitrobacter agilis cells in the homologous and heterologous reactions with the differently grownNitrobacter agilis cells. Similar results were obtained withN. winogradskyi; but there were differences between the heterotrophically grown cells and the autotrophically and mixotrophically grown cells. The autotrophically grown cells ofN. winogradskyi andN. agilis had nearly no immunological differences, while the cross-reactions of the heterotrophically grown cells differed strongly. So, growth conditions are of considerable influence on the serological behavior of the two bacteria tested. Of twelve lectins tested, five (fromAaptos papillata, Axinella polypoides, Cerianthus sp.,Ulex europeus, and Anti-H specific agglutinin of eel serum) agglutinated cells ofN. agilis andN. winogradskyi, indicating thatN-acetyl-glucosamine, galactose, and fucose may be present in the bacterial cell wall. Immunodiffusion showed that cells of both nitrifying organisms grown under different conditions had at least one antigenic surface structure in common.  相似文献   

4.
The alphaproteobacterium Nitrobacter hamburgensis X14 is a gram-negative facultative chemolithoautotroph that conserves energy from the oxidation of nitrite to nitrate. Sequencing and analysis of the Nitrobacter hamburgensis X14 genome revealed four replicons comprised of one chromosome (4.4 Mbp) and three plasmids (294, 188, and 121 kbp). Over 20% of the genome is composed of pseudogenes and paralogs. Whole-genome comparisons were conducted between N. hamburgensis and the finished and draft genome sequences of Nitrobacter winogradskyi and Nitrobacter sp. strain Nb-311A, respectively. Most of the plasmid-borne genes were unique to N. hamburgensis and encode a variety of functions (central metabolism, energy conservation, conjugation, and heavy metal resistance), yet approximately 21 kb of a approximately 28-kb "autotrophic" island on the largest plasmid was conserved in the chromosomes of Nitrobacter winogradskyi Nb-255 and Nitrobacter sp. strain Nb-311A. The N. hamburgensis chromosome also harbors many unique genes, including those for heme-copper oxidases, cytochrome b(561), and putative pathways for the catabolism of aromatic, organic, and one-carbon compounds, which help verify and extend its mixotrophic potential. A Nitrobacter "subcore" genome was also constructed by removing homologs found in strains of the closest evolutionary relatives, Bradyrhizobium japonicum and Rhodopseudomonas palustris. Among the Nitrobacter subcore inventory (116 genes), copies of genes or gene clusters for nitrite oxidoreductase (NXR), cytochromes associated with a dissimilatory nitrite reductase (NirK), PII-like regulators, and polysaccharide formation were identified. Many of the subcore genes have diverged significantly from, or have origins outside, the alphaproteobacterial lineage and may indicate some of the unique genetic requirements for nitrite oxidation in Nitrobacter.  相似文献   

5.
Nitrobacter agilis, grown through seven transfers heterotrophically in the absence of nitrite, was examined in the electron microscope. The ultrastructure of such cells closely resembled that of autotrophically grown N. agilis. It was thus futher established that the organisms growing heterotrophically were indeed N. agilis and, therefore, that N. agilis is a facultative autotroph. Acetate incorporation into poly-beta-hydroxybutyrate was confirmed cytologically.  相似文献   

6.
Abstract Nitrobacter hamburgensis was shown to synthesize at least two distinct membrane-bound b -type cytochromes. One of these, a minor component detected during nitrite oxidation, was also found in the obligately autotrophic species Nitrobacter winogradskyi . During heterotrophic growth of N. hamburgensis a second (major) cytochrome b was detected, which we assume functions as an alternative terminal oxidase.  相似文献   

7.
Nitrite oxidoreductase was isolated from mixotrophically grown cells of Nitrobacter hamburgensis. The enzyme purified from heat treated membranes was homogeneous by the criteria of polyacrylamide gel electrophoresis and size exclusion chromatography. The monomeric form consisted of two subunits with Mr 115000 and 65000, respectively. The dimeric form of the enzyme contained 0.70 molybdenum, 23.0 iron, 1.76 zinc, and 0.89 copper. The catalytically active enzyme was investigated by visible and electron paramagnetic resonance spectroscopy (EPR) under oxidizing (as isolated), reducing (dithionite), and turnover (nitrite) conditions. As isolated the enzyme exhibited a complex set of EPR signals between 5–75 K, originating from several ironsulfur and molybdenum (V) centers. Addition of the substrate nitrite, or the reducing agent dithionite resulted in a set of new resonances. The molybdenum and the iron-sulfur centers of nitrite oxidoreductase from Nitrobacter hamburgensis were involved in the transformation of nitrite to nitrate.Abbreviations EPR electron paramagnetic resonance - ICP-AES inductively coupled plasma-atomic emission spectrometry - NaPi sodium phosphate - PAGE polyacrylamide gel electrophoresis - SDS sodium dodecyl sulfate  相似文献   

8.
Abstract Heterologous DNA hybridization using a ribulose- 1,5-biphosphate carboxylase/oxygenase (RuBisCOase) large subunit gene ( rbc L) probe from Anacystis nidulans revealed the presence of two rbc L in Nitrobacter hamburgensis . One gene is located on a plasmid, the other on the chromosome. The genes appear to be very similar since both hybridized strongly to the A. nidulans probe. However, restriction endonuclease digestions revealed differences.
Two different RuBisCOase enzymes were isolated from N. hamburgensis. The M r of the native enzymes were 520 000 and 480 000. Sodium dodecyl sulfate-polycrylamide gel electrophoresis (SDS-PAGE) revealed the presence of both LSU and small subunits (SSU) for both enzymes. The M r were 53 000 and 16 000, and 49 000 and 13 500, respectively. A hexadecameric structure is suggested for both enzymes.  相似文献   

9.
Abstract Proton translocation associated with electron flow to oxygen has been observed with cells of Nitrobacter winogradskyi in the presence of either potassium ferrocyanide or isoascorbate plus N , N , N ', N ' tetramethyl- p -phenylenediamine. The data are consistent with a proton pumping function for the terminal oxidase, cytochrome aa 3, in this organism as the mechanism for generating a protonmotive force. The failure of previous work with Nitrobacter [4] to detect proton translocation linked to oxidation of nitrite, the physiological substrate, is discussed.  相似文献   

10.
Detection and counting of Nitrobacter populations in soil by PCR.   总被引:9,自引:3,他引:6       下载免费PDF全文
Although the biological conversion of nitrite to nitrate is a well-known process, studies of Nitrobacter populations are hindered by their physiological characteristics. This report describes a new method for detecting and counting Nitrobacter populations in situ with the PCR. Two primers from the 16S rRNA gene were used to generate a 397-bp fragment by amplification of Nitrobacter species DNA. No signal was detected from their phylogenetic neighbors or the common soil bacteria tested. Extraction and purification steps were optimized for minimal loss and maximal purity of soil DNA. The detection threshold and accuracy of the molecular method were determined from soil inoculated with 10, 10(2), or 10(3) Nitrobacter hamburgensis cells per g of soil. Counts were also done by the most-probable-number (MPN)-Griess and fluorescent antibody methods. PCR had a lower detection threshold (10(2) Nitrobacter cells per g of soil) than did the MPN-Griess or fluorescent antibody method. When PCR amplification was coupled with the MPN method, the counting rate reached 65 to 72% of inoculated Nitrobacter cells. Tested on nonsterile soil, this rapid procedure was proved efficient.  相似文献   

11.
The adenine nucleotide pools and the NADH pool were compared in intact Nitrobacter winogradskyi cells grown under different conditions. The NADH pool was highest in nitrite-grown cells (22.0 nmol/mg N), less high in acetategrown cells (15.1 nmol/mg N),and lowest in pyruvate-grown cells (11.9 nmol/mg N).The adenine nucleotide pools and the NADH pool were determined after the transition from anaerobic to aerobic conditions.In both autotrophically and heterotrophically grown cells the ATP pool decreased within the first second after the addition of oxygen and then increased.In cells grown with nitrite or acetate the NADH pool increased the first second after the addition of oxygen then decreased below the initial value. In pyruvate-grown cells the changes in the NADH pool were less obvious.In the presence of rotenone autotrophic cells were able to generate ATP, but the reverse energy-dependent electron transport was inhibited. Consequently, NADH was not synthesized. N,N-dicyclohexylcarbodiimide an inhibitor of ATPase, prevented both ATP and NADH generation.Abbreviations DCCD N,N-dicyclohexylcarbodiimide  相似文献   

12.
Abstract Enumerations of nitrite-oxidizing bacteria in soil samples by a Most Probable Number technique, often showed relatively high cell numbers at a low nitrite concentration compared with the numbers of ammonium-oxidizing bacteria. It was hypothesized that the high numbers enumerated at low nitrite concentration would represent non-growing or organotrophically growing cells of nitrite-oxidizing species. In this paper, the sensitivity of non-growing Nitrobacter species to high nitrite concentrations as well as to low pH was examined. Different Nitrobacter species were pre-cultured at 0.5 mM nitrite. Non-growing cells differing in age were enumerated at different nitrite concentrations and pH values. The incubation period lasted for 5 months at 20°C. However, during the incubation periods of the older non-growing cells, it appeared that a period of 5 months might have been too short for reaching constant numbers. Early stationary cells of all species that were studied appeared not to be affected by high nitrite concentrations or low pH. Eight- and 18-month-old non-growing cells of Nitrobacter hamburgensis were also insensitive to 5 mM nitrite. The numbers of 8- and 18-month-old resting cells of N. vulgaris were only repressed by a combination of 5 mM nitrite and a low pH. Eight-month-old non-growing cells of N. winogradskyi were sensitive to 5 mM irrespective of pH, but 18-month-old cells only to 5 mM nitrate at low pH. The numbers of 8- and 18-month-old resting cells of N. winogradskyi serotype agilis were repressed by low pH rather than high nitrite concentration. Hence, it was concluded that the large differences in numbers of nitrite-oxidizing bacteria obtained with low and high nitrite concentrations in the incubation medium, was not likely to be due to the presence of non-growing Nitrobacter species in soil samples, but rather to the existence of organotrophically growing Nitrobacter cells.  相似文献   

13.
Cytochrome oxidase has been purified from Nitrobacter agilis using hydrophobic interaction chromatography. The purified preparation contained 3-5% phospholipid and migrated as a single band during polyacrylamide gel electrophoresis under nondissociating conditions, but appeared as three bands in the presence of sodium dodecyl sulfate and 6 M urea. These three bands corresponded to molecular weights of 37 000, 25 000, and 13 000. The absorption spectra of cytochrome oxidase isolated from Nitrobacter were similar to those reported for a-type cytochrome oxidase from other sources and exhibited absorption maxima at 420 and 600 nm when oxidized and 443 and 606 nm when reduced. The purified enzyme reacted both with horse heart and Nitrobacter cytochrome c. The enzymatic activity depended upon the pH of reaction mixture, with the maximum activity at pH 6.5 and 7.5 for Nitrobacter and horse heart cytochrome c, respectively. The activity of the purified enzyme was inhibited by cyanide, azide, and diethyl dithiocarbamate.  相似文献   

14.
The influence of growth rate, the presence of acetate and variation in the dissolved oxygen concentration on the kinetics of nitrite oxidation was studied in suspensions of intact cells of Nitrobacter winogradskyi and Nitrobacter hamburgensis. The cells were grown in nitrite-limited chemostats at different dilution rates under chemolithotrophic and mixotrophic conditions. Growth of N. hamburgensis in continuous culture was dependent on the presence of acetate. Acetate hardly affected the maximal nitrite oxidation rate per cell (V max), but displayed a distinctly negative effect on the saturation constants for nitrite oxidation (K m ) of both Nitrobacter species. This effect was reversible; when acetate was removed from the suspensions the K m -values for nitrite oxidation returned to their original values. A reduction of the dissolved oxygen concentration from 100% to 18% air saturation slightly decreased the V max of chemolithotrophically grown N. winogradskyi cells, whereas a 2.3 fold increase was observed with mixotrophically grown cells of N. hamburgensis. It is suggested that the large variation in K m encountered in field samples could be due to this observed phenotypic variability. The V max per cell is not a constant, but apparently is dependent on growth rate and environmental conditions. This implies that potential nitrite oxidation activity and numbers of cells are not necessarily related. Considering their kinetic characteristics, it is unlikely that N. hamburgensis is able to compete succesfully with N. winogradskyi for limiting amounts of nitrite under mixotrophic conditions. However, at reduced partial oxygen tensions, N. hamburgensis may become the better competitor.  相似文献   

15.
Acetate (1 to 10 mm) had no effect on the rate of nitrite oxidation or exponential growth by Nitrobacter agilis. However, acetate-1-(14)C and -2-(14)C were both assimilated by growing cultures, and acetate carbon contributed 33 to 39% of newly synthesized cell carbon. Carbon from acetate was incorporated into all of the major cell constituents, including most of the amino acids of cell protein and poly-beta-hydroxybutyrate (PHB). Cultures grown in the presence of acetate showed a significant increase in turbidity, attributable in part to protein synthesis and the accumulation of PHB in the "post-exponential phase," when the supply of nitrite was completely exhausted. Cell suspensons of N. agilis assimilated acetate in the absence of bicarbonate and even in the absence of nitrite. However, the addition of nitrite increased the rate of acetate assimilation by cell suspensions. The distribution of (14)C-acetate incorporated by cell suspensions was qualitatively similar to that found with growing cultures. Cell suspensions of N. agilis slowly oxidized acetate to CO(2). Addition of nitrite suppressed CO(2) production from acetate but increased the assimilation of acetate carbon into cell material. N. agilis contained all the enzymes of the tricarboxylic acid cycle. Growth of N. agilis in the presence of acetate did not significantly affect the levels of the enzymes of the tricarboxylic acid cycle, but did result in a 100-fold increase in the specific activity of isocitratase. In contrast, carboxydismutase was partially repressed. N. agilis was grown heterotrophically through seven transfers on a medium containing acetate and casein hydrolysate. The addition of nitrite increased the rate of heterotrophic growth. Heterotrophically grown organisms still retained their ability to grow autotrophically with nitrite. However, these organisms oxidized nitrite at a slower rate. Organisms from autotrophic and heterotrophic cultures were analyzed to determine the mean guanine plus cytosine content of their deoxyribonucleic acid; in both cases this mean was 61.2 +/- 1%. We concluded that N. agilis is not an obligate autotroph; it appears to be a facultative autotroph which resembles the novel facultative autotroph, Thiobacillus intermedius, very closely.  相似文献   

16.
Abstract Cytochrome components which participate in the oxidation of nitrite in Nitrobacter winogradskyi have been highly purified and their properties studied in detail. Cytochrome a 1 c 1 is an iron-sulphur molybdoenzyme which has haems a and c and acts as a nitrite-cytochrome c oxidoreductase. Cytochrome c -550 is homologous to eukaryotic cytochrome c and acts as the electron mediator between cytochrome a 1 c 1 and aa 3-type cytochrome c oxidase. The oxidase is composed of two kinds of subunits, has two molecules of haem a and two atoms of copper in the molecule, and oxidizes actively eukaryotic ferrocytochrome c as well as its own ferrocytochrome c -550. Further, a flavoenzyme has been obtained which has transhydrogenase activity and catalyses reduction of NADP+ with benzylviologen radical. This enzyme may be responsible for production of NADPH in N. winogradskyi . The electron transfer against redox potential from NO2 to cythochrome c could be pushed through prompt removal by cytochrome aa 3 of H+ formed by the dehydrogenation of NO2+ H2O. As cytochrome c in anaerobically kept cell-free extracts is rapidly reduced on addition of NO2, a membrane potential does not seem necessary for the reduction of cytochrome c by cytochrome a 1 c 1 with NO2 in vivo.  相似文献   

17.
Effects of Pesticides on Nitrite Oxidation by Nitrobacter agilis   总被引:2,自引:2,他引:0       下载免费PDF全文
The influence of pesticides on the growth of Nitrobacter agilis in aerated cultures and on the respiration of N. agilis cell suspensions and cell-free extracts was studied. Two pesticides, aldrin and simazine, were not inhibitory to growth of Nitrobacter, but five compounds [isopropyl N-(3-chlorophenyl) carbamate (CIPC), chlordane, 1,1-dichloro-2,2-bis (p-chlorophenyl) ethane (DDD), heptachlor, and lindane] prevented growth when added to the medium at a concentration of 10 mug/ml. Whereas CIPC and eptam prevented nitrite oxidation by cell suspensions, the addition of DDD and lindane resulted in only partial inhibition of the oxidation. Heptachlor and chlordane also caused only partial inhibition of oxidation, but were more toxic with cell-free extract nitrite oxidase. None of the pesticides inhibited the nitrate reductase activity of cell-free extracts, but most caused some repression of cytochrome c oxidase activity. Heptachlor was the most deleterious compound.  相似文献   

18.
Energy conservation in Nitrobacter   总被引:1,自引:0,他引:1  
Abstract The generation of ATP and NADH in total cells of Nitrobacter was measured under aerobic and anaerobic conditions. NADH synthesis was driven by an ATP independent reaction with nitrite or nitric oxide as electron donors. The rate of NADH formation was about 200 times higher, if nitric oxide instead of nitrite served as electron donor. Approximately 2 mol nitric oxide were needed for reduction of 1 mol NAD+. Nitrite caused an end-product inhibition of the nitric oxide induced NADH synthesis. ATP was synthesized by NADH oxidation with oxygen and nitrate as terminal electron acceptors.  相似文献   

19.
Growth of Nitrobacter by dissimilatoric nitrate reduction   总被引:2,自引:0,他引:2  
Abstract Eight strains of the genus Nitrobacter grew under anaerobic conditions in the presence of nitrate. The growth was inhibited by nitrate concentrations above 0.5 mM. By a special culture technique inhibition caused by nitrite was abolished. Nitrate oxidizing cells grew in gas tight culture flasks as a biofilm on a gas-permeable silicone tubing. The biofilm allowed nitrate-reducing cells to grow at a low nitrite concentration. These cells grew either actively motile in the anaerobic medium, or in anaerobic zones of the biofilm. They produced nitrite and ammonia. Nitrogen balance calculations established a loss of inorganic nitrogen for 5 of 8 strains. This implies that nitrate-reducing cells produced furthermore volatile nitrogen compounds. N2O was detected by gas chromatography.  相似文献   

20.
  1. Culture filtrates of heterotrophic bacteria were tested for their stimulatory effect on nitrification of three strains of Nitrobacter.
  2. Yeast extract-peptone solution, in which Pseudomonas fluorescens had grown, after removal of the cells was added to autotrophically growing cultures of Nitrobacter agilis; it caused a stimulated nitrite oxidation and growth of Nitrobacter agilis.
  3. The degree of stimulation depended on: a) the proportion of the culture filtrate to the autotrophic medium; b) the composition of the complex medium in which Pseudomonas fluorescens had been grown; c) the time the heterotrophic bacterium had been grown in the complex medium.
  4. The stimulatory effect was highest with Nitrobacter agilis, less with Nitrobacter winogradskyi and negligible with Nitrobacter K 4.
  5. It was possible to adapt nitrifying cells of Nitrobacter agilis to higher concentrations of yeast extract and peptone. After the nitrite had been completely oxidized the cell-N still increased up to 30% before growth stopped.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号