首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Certain virulence region operons of the Agrobacterium tumefaciens Ti plasmid promoted conjugative Ti plasmid transfer. Mutations in the vir region of pTiC58 inhibited conjugative plasmid transfer between A. tumefaciens strains. Mutations in virA, virG, 5' virB, and virE had the greatest effect on plasmid transfer, and mutations in virC had no effect. Transfer inhibition in vir mutants occurred in the presence or absence of acetosyringone.  相似文献   

3.
Upon incubation of Agrobacterium tumefaciens A348 with acetosyringone, the vir genes encoded by the Ti (tumor-inducing) plasmid are induced. The addition of certain opines, including octopine, nopaline, leucinopine, and succinamopine, enhanced this induction 2- to 10-fold. The compounds mannopine, acetopine, arginine, pyruvate, and leucine did not stimulate the induction of the vir genes to such an extent. The enhancement of vir gene induction by opines depended on acetosyringone and the genes virA and virG. Opines stimulated the activity of the vir genes, the double-stranded cleavage of the T (transferred)-DNA at the border repeat sequences, and the production of T-strands by the bacterium. The transformation efficiency of cotton shoot tips was markedly increased by the addition of acetosyringone and nopaline at the time of infection.  相似文献   

4.
Dual control of Agrobacterium tumefaciens Ti plasmid virulence genes.   总被引:17,自引:11,他引:6       下载免费PDF全文
The virulence genes of nopaline (pTiC58) and octopine (pTiA6NC) Ti plasmids are similarly affected by the Agrobacterium tumefaciens ros mutation. Of six vir region complementation groups (virA, virB, virG, virC, virD, and virE) examined by using fusions to reporter genes, the promoters of only two (virC and virD) responded to the ros mutation. For each promoter that was affected by ros, the level of expression of its associated genes was substantially elevated in the mutant. This increase was not influenced by Ti plasmid-encoded factors, and the mutation did not interfere with the induction of pTiC58 vir genes by phenolic compounds via the VirA/VirG regulatory control mechanism. The effects of the ros mutation and acetosyringone were cumulative for all vir promoters examined. The pleiotropic characteristics of the ros mutant include the complete absence of the major acidic capsular polysaccharide.  相似文献   

5.
Dynamic structure of Agrobacterium tumefaciens Ti plasmids.   总被引:3,自引:2,他引:1       下载免费PDF全文
Agrobacterium tumefaciens C58F is a variant of strain C58 which generates a high proportion of avirulent mutants in the presence of the virulence (vir) gene inducer acetosyringone. These mutants are altered in the Ti plasmid and do not respond to the acetosyringone signal (C. Fortin, E. W. Nester, and P. Dion, J. Bacteriol. 174:5676-5685, 1992). The physical organization of the Ti plasmid was compared in strain C58 and its variant. One feature distinguishing pTiC58F from its parent plasmid was the presence of the insertion element IS426. Three copies of this element were detected in the strain C58 chromosome, whereas two additional copies were found in strain C58F, including one copy in the Ti plasmid. This particular copy of IS426 was associated with the region of arginine and nopaline catabolism of pTiC58F. Most of the avirulent mutants recovered following growth of strain C58F in the presence of acetosyringone were complemented by clones carrying either virA or virG. Element IS426 was no longer found in the arginine and nopaline catabolism region of the Ti plasmids from the virA and virG mutants, but it resided in the particular KpnI fragment containing the modified vir locus. Behavior of a strain C58F derivative, which was inactivated in a chromosomal component required for the response to acetosyringone, was consistent with the possibility that vir gene induction is essential to the massive production of avirulent mutants.  相似文献   

6.
Previous studies have shown that Agrobacterium tumefaciens causes tumors on plants only at temperatures below 32 degrees C, and virulence gene expression is specifically inhibited at temperatures above 32 degrees C. We show here that this effect persists even when the virA and virG loci are expressed under the control of a lac promoter whose activity is temperature independent. This finding suggests that one or more steps in the signal transduction process mediated by the VirA and VirG proteins are temperature sensitive. Both the autophosphorylation of VirA and the subsequent transfer of phosphate to VirG are shown to be sensitive to high temperatures (> 32 degrees C), and this correlates with the reduced vir gene expression observed at these temperatures. At temperatures of 32 degrees C and higher, the VirA molecule undergoes a reversible inactivation while the VirG molecule is not affected. vir gene induction is temperature sensitive in an acetosyringone-independent virA mutant background but not in a virG constitutive mutant which is virA and acetosyringone independent. These observations all support the notion that the VirA protein is responsible for the thermosensitivity of vir gene expression. However, an Agrobacterium strain containing a constitutive virG locus still cannot cause tumors on Kalanchoe plants at 32 degrees C. This strain induces normal-size tumors at temperatures up to 30 degrees C, whereas the wild-type Agrobacterium strain produces almost no tumors at 30 degrees C. These results suggest that at temperatures above 32 degrees C, the plant becomes more resistant to infection by A. tumefaciens and/or functions of some other vir gene products are lost in spite of their normal levels of expression.  相似文献   

7.
Virulence genes of the Agrobacterium tumefaciens Ti plasmid are positively regulated by the products of virA and virG. To study the DNA-binding properties of the VirG protein, a translational fusion between virG and the trpE gene of Escherichia coli was constructed, and antiserum was raised against the encoded fusion protein. Using this antiserum, a protein of Mr congruent to 29,000, a size similar to that calculated from the virG nucleotide sequence, was detected in an E. coli strain harbouring a virG expression vector. Both the virG protein and the fusion protein were found, by filter-binding and gel retardation analyses, to bind DNA nonspecifically. These data support an existing model for the two-component regulatory systems of bacteria.  相似文献   

8.
The vir genes of octopine, nopaline, and L,L-succinamopine Ti plasmids exhibit structural and functional similarities. However, we observed differences in the interactions between octopine and nopaline vir components. The induction of an octopine virE(A6)::lacZ fusion (pSM358cd) was 2.3-fold higher in an octopine strain (A348) than in a nopaline strain (C58). Supplementation of the octopine virG(A6) in a nopaline strain with pSM358 did not completely restore virE(A6) induction. However, addition of the octopine virA(A6) to the above strain increased virE(A6) induction to a level almost comparable to that in octopine strains. In a reciprocal analysis, the induction of a nopaline virE(C58)::cat fusion (pUCD1553) was two- to threefold higher in nopaline (C58 and T37) strains than in octopine (A348 and Ach5) and L,L-succinamopine (A281) strains. Supplementation of nopaline virA(C58) and virG(C58) in an octopine strain (A348) harboring pUCD1553 increased induction levels of virE(C58)::cat fusion to a level comparable to that in a nopaline strain (C58). Our results suggest that octopine and L,L-succinamopine VirG proteins induce the octopine virE(A6) more efficiently than they do the nopaline virE(C58). Conversely, the nopaline VirG protein induces the nopaline virE(C58) more efficiently than it does the octopine virE(A6). The ability of Bo542 virG to bring about supervirulence in tobacco is observed for an octopine vir helper (LBA4404) but not for a nopaline vir helper (PMP90). Our analyses reveal that quantitative differences exist in the interactions between VirG and vir boxes of different Ti plasmids. Efficient vir gene induction in octopine and nopaline strains requires virA, virG, and vir boxes from the respective Ti plasmids.  相似文献   

9.
The Agrobacterium VirG protein is normally expressed from two promoters in response to multiple stimuli, including plant-released phenolics (at promoter P1) and acidic growth media (at promoter P2). To simplify the analysis of vir gene induction, we sought to create Agrobacterium strains in which virG could be expressed in a controllable fashion. To study the possibility of using the lac promoter and repressor, we constructed a plasmid containing the lac promoter fused to the lacZ structural gene. A derivative of this plasmid containing the lacIq gene was also constructed. The plasmid not containing lacIq expressed high levels of beta-galactosidase. The plasmid containing lacIq expressed beta-galactosidase at very low levels in the absence of o-nitrophenyl-beta-D-galactoside (IPTG) and at moderate levels in the presence of IPTG. We also fused the lac promoter to a virG::lacZ translational fusion and found that IPTG elevated expression of this translational fusion to moderate levels, though not to levels as high as from the stronger of the two native virG promoters. Finally, the lac promoter was used to express the native virG gene in strains containing a virB::lacZ translational fusion. virB expression in this strain depended on addition of IPTG as well as the vir gene inducer acetosyringone. In a similar strain lacking lacIq, virB expression was greater than in a strain in which virG was expressed from its native promoters. Expression of virG from the lac promoter did not alter the acidic pH optimum for vir gene induction, indicating that the previously observed requirement for acidic media was not due solely to the need to induce P2.  相似文献   

10.
11.
12.
13.
G J Pazour  C N Ta    A Das 《Journal of bacteriology》1992,174(12):4169-4174
The virulence (vir) genes of Agrobacterium tumefaciens Ti plasmids are positively regulated by virG in conjunction with virA and plant-derived inducing molecules. A procedure that utilizes both genetic selection and a genetic screen was developed to isolate mutations in virG that led to elevated levels of vir gene expression in the absence of virA and plant phenolic inducers. Mutants were isolated at a frequency of 1 in 10(7) to 10(8). Substitution mutations at two positions in the virG coding region were found to result in the desired phenotype. One mutant had an asparagine-to-aspartic acid substitution at residue 54, and the other contained an isoleucine-to-leucine substitution at residue 106. In both cases, the mutant phenotype required the presence of the active-site aspartic acid residue at position 52. Further analysis showed that no other substitution at residue 54 resulted in a constitutive phenotype. In contrast, several substitutions at residue 106 led to a constitutive phenotype. The possible roles of the residues at positions 54 and 106 in VirG function are discussed.  相似文献   

14.
15.
16.
17.
The nopaline-type Ti plasmid T37 of Agrobacterium tumefaciens carries two distinct genes that encode enzymes involved in cytokinin biosynthesis. In this report, we show that the level of expression of one of these genes was increased dramatically by culture conditions that increased the expression of Ti plasmid virulence genes, including coculture with plant cells or treatment with acetosyringone, a plant phenolic compound. When this nopaline-type Ti plasmid gene was introduced into Agrobacterium strains containing an octopine-type Ti plasmid, similar induction of expression by culture conditions was observed, and analysis of virulence region mutants demonstrated that this induction was under the control of the virA and virG regulatory loci. We further show that induction was strongly pH dependent in octopine strains but, under the conditions examined, pH independent in nopaline strains.  相似文献   

18.
19.
20.
Mutation of the genes virA, virB, virC, and virG of the Agrobacterium tumefaciens octopine-type Ti plasmid pTiR10 was found to cause a 100- to 10,000-fold decrease in the frequency of conjugal transfer of this plasmid between Agrobacterium cells. This effect was not absolute, however, in that it occurred only during early times (18 to 24 h) of induction of the conjugal transfer apparatus by octopine. Induction of these mutant Agrobacterium strains by octopine for longer periods (48 to 72 h) resulted in a normal conjugal transfer frequency. The effect of these vir gene mutations upon conjugation could be restored by the introduction of cosmids harboring wild-type copies of the corresponding disrupted vir genes into the mutant Agrobacterium strains. In addition, transfer of the self-mobilizable plasmid pPH1JI was not impaired in any of the mutant Agrobacterium strains tested. The effect of vir gene function on the conjugal transfer of the Ti plasmid suggests that a relationship may exist between the processes that control the transfer of the T-DNA from Agrobacterium to plant cells and the conjugal transfer of the Ti plasmid between bacterial cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号