首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The results of batch-process solar disinfection (SODIS) of Cryptosporidium parvum oocysts in water are reported. Oocyst suspensions were exposed to simulated sunlight (830 W m(-2)) at 40 degrees C. Viability assays (4',6'-diamidino-2-phenylindole [DAPI]/propidium iodide and excystation) and infectivity tests (Swiss CD-1 suckling mice) were performed. SODIS exposures of 6 and 12 h reduced oocyst infectivity from 100% to 7.5% (standard deviation = 2.3) and 0% (standard deviation = 0.0), respectively.  相似文献   

2.
AIM: To determine whether batch solar disinfection (SODIS) can be used to inactivate oocysts of Cryptosporidium parvum and cysts of Giardia muris in experimentally contaminated water. METHODS AND RESULTS: Suspensions of oocysts and cysts were exposed to simulated global solar irradiation of 830 W m(-2) for different exposure times at a constant temperature of 40 degrees C. Infectivity tests were carried out using CD-1 suckling mice in the Cryptosporidium experiments and newly weaned CD-1 mice in the Giardia experiments. Exposure times of > or =10 h (total optical dose c. 30 kJ) rendered C. parvum oocysts noninfective. Giardia muris cysts were rendered completely noninfective within 4 h (total optical dose >12 kJ). Scanning electron microscopy and viability (4',6-diamidino-2-phenylindole/propidium iodide fluorogenic dyes and excystation) studies on oocysts of C. parvum suggest that inactivation is caused by damage to the oocyst wall. CONCLUSIONS: Results show that cysts of G. muris and oocysts of C. parvum are rendered completely noninfective after batch SODIS exposures of 4 and 10 h (respectively) and is also likely to be effective against waterborne cysts of Giardia lamblia. SIGNIFICANCE AND IMPACT OF THE STUDY: These results demonstrate that SODIS is an appropriate household water treatment technology for use as an emergency intervention in aftermath of natural or man-made disasters against not only bacterial but also protozoan pathogens.  相似文献   

3.
4.
A metagenome-based approach was used to assess the taxonomic affiliation and function potential of microbial populations in free-chlorine-treated (CHL) and monochloramine-treated (CHM) drinking water (DW). In all, 362,640 (averaging 544 bp) and 155,593 (averaging 554 bp) pyrosequencing reads were analyzed for the CHL and CHM samples, respectively. Most annotated proteins were found to be of bacterial origin, although eukaryotic, archaeal, and viral proteins were also identified. Differences in community structure and function were noted. Most notably, Legionella-like genes were more abundant in the CHL samples while mycobacterial genes were more abundant in CHM samples. Genes associated with multiple disinfectant mechanisms were identified in both communities. Moreover, sequences linked to virulence factors, such as antibiotic resistance mechanisms, were observed in both microbial communities. This study provides new insights into the genetic network and potential biological processes associated with the molecular microbial ecology of DW microbial communities.  相似文献   

5.
AIMS: The mortality and morbidity rate caused by Shigella dysenteriae type I infection is increasing in the developing world each year. In this paper, the possibility of using batch process solar disinfection (SODIS) as an effective means of disinfecting drinking water contaminated with Sh. dysenteriae type I is investigated. METHODS: Phosphate-buffered saline contaminated with Sh. dysenteriae type I was exposed to simulated solar conditions and the inactivation kinetics of this organism was compared with that of Sh. flexneri, Vibrio cholerae and Salmonella typhimurium. SIGNIFICANCE: Recovery of injured Sh. dysenteriae type I may be improved by plating on medium supplemented with catalase or pyruvate. Sh. dysenteriae type I is very sensitive to batch process SODIS and is easily inactivated even during overcast conditions. Batch process SODIS is an appropriate intervention for use in developing countries during Sh. dysenteriae type I epidemics.  相似文献   

6.
A unique association between bacterial cells and small goethite particles (approximately 0.2 by 2 microm) protected Escherichia coli and Pseudomonas putida from UV inactivation. The protection increased with the particle concentration in the turbidity range of 1 to 50 nephelometric turbidity units and with the bacterium-particle attachment time prior to UV irradiation. The lower degree of bacterial inactivation at longer attachment time was mostly attributed to the particle aggregation surrounding bacteria that provided shielding from UV radiation.  相似文献   

7.
The feasibility of using solar photo-oxidation to inactivate faecal bacterial contaminants in drinking water has been evaluated under field conditions in India and South Africa. Freshly drawn samples from all six test water sources were low in dissolved oxygen, at 13-40% of the air saturation value. However, vigorous mixing followed by exposure to full-strength sunlight in transparent plastic containers (1-25 l capacity) caused a rapid decrease in the counts of faecal indicator bacteria, giving complete inactivation within 3-6 h, with no evidence of reactivation. These results demonstrate that solar photo-oxidation may provide a practical, low-cost approach to the improvement of drinking water quality in developing countries with consistently sunny climates.  相似文献   

8.
Comprehensive identification of chemical contaminants in Army field water supplies can be a lengthy process, but rapid analytical methods suitable for field use are limited. A complementary approach is to directly measure toxicity instead of individual chemical constituents. Ten toxicity sensors utilizing enzymes, bacteria, or vertebrate cells were tested to determine the minimum number of sensors that could rapidly identify toxicity in water samples containing one of 12 industrial chemicals. The ideal sensor would respond at a concentration just exceeding the Military Exposure Guideline (MEG) level for the chemical (an estimated threshold for adverse effects) but below the human lethal concentration. Chemical solutions were provided to testing laboratories as blind samples. No sensors responded to deionized water blanks, and only one sensor responded to a hard water blank. No single toxicity sensor responded to more than six chemicals in the desired response range, and one chemical (nicotine) was not detected by any sensor with the desired sensitivity. A combination of three sensors (Microtox, the Electric Cell Substrate Impedance Sensing (ECIS) test, and the Hepatocyte low density lipoprotein (LDL) uptake test) responded appropriately to nine of twelve chemicals. Adding a fourth sensor (neuronal microelectrode array) to the test battery allowed detection of two additional chemicals (aldicarb and methamidophos), but the neuronal microelectrode array was overly sensitive to paraquat. Evaluating sensor performance using a standard set of chemicals and a desired sensitivity range provides a basis both for selecting among available toxicity sensors and for evaluating emerging sensor technologies. Recommendations for future toxicity sensor evaluations are discussed.  相似文献   

9.
A novel electrochemical reactor employing activated carbon fiber (ACF) electrodes was constructed for disinfecting bacteria in drinking water. Escherichia coli adsorbed preferentially onto ACF rather than to carbon-cloth or granular-activated carbon. E. coli cells, which adsorbed onto the ACF, were killed electrochemically when a potential of 0.8 V vs. a saturated calomel electrode (SCE) was applied. Drinking water was passed through the reactor in stop-flow mode: 2mL/min for 12 h, o L/min for 24 h, and 1 mL/min for 6 h. At an applied potential of 0.8 V vs, SCE, viable cell concentration reamined below 30 cells/mL. In the absence of an applied potential, bacteria grew to a maximum concentration of 9.5 x 10(3) cells/mL. After continuous operation at 0.8 V vs. SCE, cells adsorbed onto the ACF could not be observed by scanning electron microscopy. In addition, chlorine in drinking water was completely removed by the reactor. Therefore, clean and efficient inactivation of bacteria in drinking water was successfully performed. (c) 1994 John Wiley & Sons, Inc.  相似文献   

10.
Batch solar disinfection (SODIS) inactivation kinetics are reported for suspensions in water of Campylobacter jejuni, Yersinia enterocolitica, enteropathogenic Escherichia coli, Staphylococcus epidermidis, and endospores of Bacillus subtilis, exposed to strong natural sunlight in Spain and Bolivia. The exposure time required for complete inactivation (at least 4-log-unit reduction and below the limit of detection, 17 CFU/ml) under conditions of strong natural sunlight (maximum global irradiance, approximately 1,050 W m(-2) +/- 10 W m(-2)) was as follows: C. jejuni, 20 min; S. epidermidis, 45 min; enteropathogenic E. coli, 90 min; Y. enterocolitica, 150 min. Following incomplete inactivation of B. subtilis endospores after the first day, reexposure of these samples on the following day found that 4% (standard error, 3%) of the endospores remained viable after a cumulative exposure time of 16 h of strong natural sunlight. SODIS is shown to be effective against the vegetative cells of a number of emerging waterborne pathogens; however, bacterial species which are spore forming may survive this intervention process.  相似文献   

11.
Aims:  To determine the impact of natural sunlight in disinfecting water contaminated with cysts of Giardia duodenalis and Entamoeba histolytica/dispar using plastic containers.
Methods and Results:  Known quantities of Giardia duodenalis and Entamoeba histolytica/dispar cysts in sterile water were exposed to the sun. Containers were made of polyethylene terephthalate, eight painted black on one side, one not painted and another cut open at the top and the last was a high density polypropylene container. Viability testing was performed using vital and fluorescent dyes. The same assays were conducted under cloudy conditions. Thermal control tests were also performed using heat without ultra violet light from the sun. Results show that 99·9% of parasites was inactivated when water temperatures reached 56°C after sunlight exposure.
Conclusion:  Both solar radiation and heat produced by the sun have a synergistic effect in killing cysts of Giardia duodenalis and Entamoeba histolytica/dispar when temperatures rise above 50°C, with complete death at 56°C, using painted 2-l PET containers.
Significance and Impact of the Study:  Solar disinfection system using PET containers painted black on one side can be used to disinfect water against Giardia duodenalis and Entamoeba histolytica/dispar using natural sunlight.  相似文献   

12.
Nitrosamine water disinfection byproducts (DBPs) are an emerging class of non-halogenated, nitrogen-containing water contaminants. Five nitrosamine DBPs were analyzed for genotoxicity (N-nitrosodimethylamine (NDMA), N-nitrosopiperidine (NPIP), N-nitrosopyrrolidine (NPYR), N-nitrosomorpholine (NMOR) and N-nitrosodiphenylamine (NDPhA). Using Salmonella typhimurium strain YG7108 the descending rank order of mutagenicity was NDMA>NPIP>NMOR>NPYR; NDPhA was not mutagenic. We developed and calibrated an exogenous S9 mix that was highly effective in activating NDMA in Chinese hamster ovary (CHO) cells using the SCGE (Comet) assay. The descending rank order for genotoxicity was NDMA>NPIP>NMOR. NDPhA was genotoxic only at one concentration and NPYR was not genotoxic. The genotoxic potencies in S. typhimurium and CHO cells were highly correlated. Based on their comparative genotoxicity attention should be focused on the generation and occurrence of NDMA, NPIP and NMOR. Current drinking water disinfection processes may need to be modified such that the generation of nitrosamine DBPs is effectively limited in order to protect the environment and the public health.  相似文献   

13.
Chu W  Gao N  Deng Y  Templeton MR  Yin D 《Bioresource technology》2011,102(24):11161-11166
The formation of disinfection by-products (DBPs), including both nitrogenous DBPs (N-DBPs) and carbonaceous DBPs (C-DBPs), was investigated by analyzing chlorinated water samples following the application of three pretreatment processes: (i) powdered activated carbon (PAC) adsorption; (ii) KMnO(4) oxidation and (iii) biological contact oxidation (BCO), coupled with conventional water treatment processes. PAC adsorption can remove effectively the precursors of chloroform (42.7%), dichloroacetonitrile (28.6%), dichloroacetamide (DCAcAm) (27.2%) and trichloronitromethane (35.7%), which were higher than that pretreated by KMnO(4) oxidation and/or BCO process. The removal efficiency of dissolved organic carbon by BCO process (76.5%)--was superior to that by PAC adsorption (69.9%) and KMnO(4) oxidation (61.4%). However, BCO increased the dissolved organic nitrogen (DON) concentration which caused more N-DBPs to be formed during subsequent chlorination. Soluble microbial products including numerous DON compounds were produced in the BCO process and were observed to play an essential role in the formation of DCAcAm in particular.  相似文献   

14.
Due to metabolic and morphological changes that can prevent Helicobacter pylori cells in water from growing on conventional media, an H. pylori-specific TaqMan quantitative PCR (qPCR) assay was developed that uses a 6-carboxyfluorescein-labeled probe (A. E. McDaniels, L. Wymer, C. Rankin, and R. Haugland, Water Res. 39:4808-4816, 2005). However, proper internal controls are needed to provide an accurate estimate of low numbers of H. pylori in drinking water. In this study, the 135-bp amplicon described by McDaniels et al. was modified at the probe binding region, using PCR mutagenesis. The fragment was incorporated into a single-copy plasmid to serve as a PCR-positive control and cloned into Escherichia coli to serve as a matrix spike. It was shown to have a detection limit of five copies, using a VIC dye-labeled probe. A DNA extraction kit was optimized that allowed sampling of an entire liter of water. Water samples spiked with the recombinant E. coli cells were shown to behave like H. pylori cells in the qPCR assay. The recombinant E. coli cells were optimized to be used at 10 cells/liter of water, where they were shown not to compete with 5 to 3,000 cells of H. pylori in a duplex qPCR assay. Four treated drinking water samples spiked with H. pylori (100 cells) demonstrated similar cycle threshold values if the chlorine disinfectant was first neutralized by sodium thiosulfate.  相似文献   

15.
Halonitromethanes (HNMs) are a recently identified class of disinfection by-products (DBPs) in drinking water. They include chloronitromethane (CHN), dichloronitromethane (DCNM), trichloronitromethane (TCNM), bromonitromethane (BNM), dibromonitromethane (DBNM), tribromonitromethane (TBNM), bromochloronitromethane (BCNM),dibromochloronitromethane (DBCNM), and bromodichloronitromethane (BDCNM). Previous studies of TCNM, DCNM, CNM, and TBNM found that all four were mutagenic in bacteria, and a recent study showed that all nine induced DNA damage in CHO cells. Here, all nine HNMs were evaluated in the Salmonella plate-incorporation assay +/- S9 using strains TA98, TA100, TA104, TPT100, and the glutathione transferase theta (GSTT1-1)-expressing strain RSJ100. All were mutagenic, most with and without S9. In the absence of S9, six were mutagenic in TA98, six in TA100, and three in TA104; in the presence of S9, these numbers were five, seven, and three, respectively. Thus, the HNMs-induced base substitutions primarily at GC sites as well as frameshifts. Although five HNMs were activated to mutagens in RSJ100 -S9, they produced < or =2-fold increases in revertants and potencies <506 rev/micromol. The rank order of the HNMs by mutagenic potency in TA100 +S9 was (BCNM DBNM) > (TBNM CNM > BNM DCNM BDCNM) > (TCNM = DBCNM). The mean rev/micromol for the three groupings, respectively, were 1423, 498, and 0, which classifies the HNMs as weak mutagens in Salmonella. Reaction of the dihalo and monohalo HNMs with GSH, possibly GSTT1-1, is a possible mechanism for formation of ultimate mutagenic products. Because the HNMs are mutagenic in Salmonella (present study) and potent clastogens in mammalian cells [Environ. Sci. Technol. 38 (2004) 62], their presence in drinking water warrants further research on their potential health effects.  相似文献   

16.
Decontamination of drinking water by direct heating in solar panels   总被引:2,自引:2,他引:0  
A device was developed for direct heating of water by solar radiation in a flow-through system of copper pipes. An adjustable thermostat valve prevents water below the chosen temperature from being withdrawn. The results show that it is possible to eliminate coliform and thermotolerant coliform bacteria from naturally contaminated river water by heating to temperatures of 65 °C or above. Artificial additions of Salmonella typhimurium , Streptococcus faecalis and Escherichia coli to contaminated river water were also inactivated after heating to 65 °C and above. The total viable count could be reduced by a factor of 1000. The heat-resistant bacteria isolated from the Mlalakuva River (Tanzania) were spore-forming bacteria which exhibited greater heat resistance than commonly used test bacteria originating from countries with colder climates. To provide a good safety margin it is recommended that an outlet water temperature of 75 °C be used. At that temperature the daily production was about 50 l of decontaminated water per m2 of solar panel, an amount that could be doubled by using a heat exchanger to recycle the heat.  相似文献   

17.
To determine whether cells of Salmonella typhimurium rendered nonculturable by simulated solar disinfection retain infectivity for mice. Bacteria suspended in water were exposed to UVA irradiation for up to 8 h. Culturability, determined by colony forming unit and Most Probable Number counts, fell by six log10 units, while cellular activity determined by the Kogure cell elongation test was retained by approximately 5% of the cells present after 8 h. Intraperitoneal doses of nonculturable cells and active but nonculturable (ABNC) cells exceeding the LD50 of the test organism and BALB/c mouse host, respectively, by 4 and 3 orders of magnitude failed to produce detectable infections. Culturable cells that had been irradiated for 1.5 h were less infective (virulent) than their nonirradiated counterparts. Nonculturable and ABNC cells of Salm. typhimurium produced by UVA irradiation do not retain infectivity for mice. Although ABNC cells could be produced by low cost solar disinfection systems, they do not appear to pose a potential infection hazard.  相似文献   

18.
【背景】在包装饮用水企业生产活动中,铜绿假单胞菌是被重点监测的致病菌之一。随着分子检测相关技术的不断发展,研制用于包装饮用水中铜绿假单胞菌简便、高效的快速检测产品至关重要。【目的】评价基于环介导恒温扩增(loop-mediated isothermal amplification,LAMP)技术的铜绿假单胞菌快速检测试剂盒在包装饮用水铜绿假单胞菌检测中的实效性。【方法】优化该LAMP反应体系,反应试剂采用冻干工艺,确定试剂盒组成,并评价其特异性、灵敏度、重复性、保质期等性能指标。【结果】铜绿假单胞菌标准菌株和分离菌株均检测为阳性,非铜绿假单胞菌标准菌株和分离菌株均检测为阴性,未发现有交叉反应;试剂盒最低检验限为18 CFU/mL;该试剂盒的特异性、灵敏度及准确度与传统方法相比具有较高的一致性;批内、批间检测重复率均为100%,可在4℃保存12个月以上,并且可在42℃环境中储存72 h以上。【结论】该试剂盒性能好,检测结果稳定、可靠,适用于包装饮用水中铜绿假单胞菌的快速检测。  相似文献   

19.
20.
Disinfection by-products (DBPs) are formed when disinfectants (chlorine, ozone, chlorine dioxide, or chloramines) react with naturally occurring organic matter, anthropogenic contaminants, bromide, and iodide during the production of drinking water. Here we review 30 years of research on the occurrence, genotoxicity, and carcinogenicity of 85 DBPs, 11 of which are currently regulated by the U.S., and 74 of which are considered emerging DBPs due to their moderate occurrence levels and/or toxicological properties. These 74 include halonitromethanes, iodo-acids and other unregulated halo-acids, iodo-trihalomethanes (THMs), and other unregulated halomethanes, halofuranones (MX [3-chloro-4-(dichloromethyl)-5-hydroxy-2(5H)-furanone] and brominated MX DBPs), haloamides, haloacetonitriles, tribromopyrrole, aldehydes, and N-nitrosodimethylamine (NDMA) and other nitrosamines. Alternative disinfection practices result in drinking water from which extracted organic material is less mutagenic than extracts of chlorinated water. However, the levels of many emerging DBPs are increased by alternative disinfectants (primarily ozone or chloramines) compared to chlorination, and many emerging DBPs are more genotoxic than some of the regulated DBPs. Our analysis identified three categories of DBPs of particular interest. Category 1 contains eight DBPs with some or all of the toxicologic characteristics of human carcinogens: four regulated (bromodichloromethane, dichloroacetic acid, dibromoacetic acid, and bromate) and four unregulated DBPs (formaldehyde, acetaldehyde, MX, and NDMA). Categories 2 and 3 contain 43 emerging DBPs that are present at moderate levels (sub- to low-mug/L): category 2 contains 29 of these that are genotoxic (including chloral hydrate and chloroacetaldehyde, which are also a rodent carcinogens); category 3 contains the remaining 14 for which little or no toxicological data are available. In general, the brominated DBPs are both more genotoxic and carcinogenic than are chlorinated compounds, and iodinated DBPs were the most genotoxic of all but have not been tested for carcinogenicity. There were toxicological data gaps for even some of the 11 regulated DBPs, as well as for most of the 74 emerging DBPs. A systematic assessment of DBPs for genotoxicity has been performed for approximately 60 DBPs for DNA damage in mammalian cells and 16 for mutagenicity in Salmonella. A recent epidemiologic study found that much of the risk for bladder cancer associated with drinking water was associated with three factors: THM levels, showering/bathing/swimming (i.e., dermal/inhalation exposure), and genotype (having the GSTT1-1 gene). This finding, along with mechanistic studies, highlights the emerging importance of dermal/inhalation exposure to the THMs, or possibly other DBPs, and the role of genotype for risk for drinking-water-associated bladder cancer. More than 50% of the total organic halogen (TOX) formed by chlorination and more than 50% of the assimilable organic carbon (AOC) formed by ozonation has not been identified chemically. The potential interactions among the 600 identified DBPs in the complex mixture of drinking water to which we are exposed by various routes is not reflected in any of the toxicology studies of individual DBPs. The categories of DBPs described here, the identified data gaps, and the emerging role of dermal/inhalation exposure provide guidance for drinking water and public health research.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号