首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To characterize the sequence features surrounding the translationinitiation sites on the genome of Synechocystis sp. strain 6803,the total proteins extracted from the cell were resolved bytwo-dimensional electrophoresis, and the amino-terminal sequencesof the relatively abundant protein spots were determined. Bycomparison of the determined amino-terminal sequences with thenucleotide sequence of the entire genome, the translation initiationsites of a total of 72 proteins were successfully assigned onthe genome. The sequence features emerged from the nucleotidesequences at and surrounding the translation initiation siteswere as follows: (1) In addition to the three initiation codons,ATG, GTG, and TTG, evidence was obtained that ATT was also usedas a rare initiation codon; (2) the core sequences (GAGG, GGAGand AGGA) of the Shine-Dalgarno sequence were identified inthe appropriate position preceding the 35 initiation sites (48.6%);and (3) the preferential sequence surrounding the initiationcodons was formulated as 5'-YY[· · ·]R-3'where Y and R denote pyrimidine and purine nucleotides, respectively,and three dots represent the initiation codons. The result obtainedwould provide valuable information for improvement of the gene-findingsoftware, and the approach used in this study should be applicablefor comprehensive analysis of the expression profiles of cellularproteins.  相似文献   

2.
L H Soe  C K Shieh  S C Baker  M F Chang    M M Lai 《Journal of virology》1987,61(12):3968-3976
A 28-kilodalton protein has been suggested to be the amino-terminal protein cleavage product of the putative coronavirus RNA polymerase (gene A) (M.R. Denison and S. Perlman, Virology 157:565-568, 1987). To elucidate the structure and mechanism of synthesis of this protein, the nucleotide sequence of the 5' 2.0 kilobases of the coronavirus mouse hepatitis virus strain JHM genome was determined. This sequence contains a single, long open reading frame and predicts a highly basic amino-terminal region. Cell-free translation of RNAs transcribed in vitro from DNAs containing gene A sequences in pT7 vectors yielded proteins initiated from the 5'-most optimal initiation codon at position 215 from the 5' end of the genome. The sequence preceding this initiation codon predicts the presence of a stable hairpin loop structure. The presence of an RNA secondary structure at the 5' end of the RNA genome is supported by the observation that gene A sequences were more efficiently translated in vitro when upstream noncoding sequences were removed. By comparing the translation products of virion genomic RNA and in vitro transcribed RNAs, we established that our clones encompassing the 5'-end mouse hepatitis virus genomic RNA encode the 28-kilodalton N-terminal cleavage product of the gene A protein. Possible cleavage sites for this protein are proposed.  相似文献   

3.
We developed a computer program, GeneHackerTL, which predictsthe most probable translation initiation site for a given nucleotidesequence. The program requires that information be extractedfrom the nucleotide sequence data surrounding the translationinitiation sites according to the framework of the Hidden MarkovModel. Since the translation initiation sites of 72 highly abundantproteins have already been assigned on the genome of Synechocystissp. strain PCC6803 by amino-terminal analysis, we extractednecessary information for GeneHackerTL from the nucleotide sequencedata. The prediction rate of the GeneHackerTL for these proteinswas estimated to be 86.1%. We then used GeneHackerTL for predictionof the translation initiation sites of 24 other proteins, ofwhich the initiation sites were not assigned experimentally,because of the lack of a potential initiation codon at the amino-terminalposition. For 20 out of the 24 proteins, the initiation siteswere predicted in the upstream of their amino-terminal positions.According to this assignment, the processed regions representa typical feature of signal peptides. We could also predictmultiple translation initiation sites for a particular genefor which at least two initiation sites were experimentallydetected. This program would be e.ective for the predictionof translation initiationsites of other proteins, not only inthis species but also in other prokaryotes as well.  相似文献   

4.
Understanding regulatory mechanisms of protein synthesis in eukaryotes is essential for the accurate annotation of genome sequences. Kozak reported that the nucleotide sequence GCCGCC(A/G)CCAUGG (AUG is the initiation codon) was frequently observed in vertebrate genes and that this 'consensus' sequence enhanced translation initiation. However, later studies using invertebrate, fungal and plant genes reported different 'consensus' sequences. In this study, we conducted extensive comparative analyses of nucleotide sequences around the initiation codon by using genomic data from 47 eukaryote species including animals, fungi, plants and protists. The analyses revealed that preferred nucleotide sequences are quite diverse among different species, but differences between patterns of nucleotide bias roughly reflect the evolutionary relationships of the species. We also found strong biases of A/G at position -3, A/C at position -2 and C at position +5 that were commonly observed in all species examined. Genes with higher expression levels showed stronger signals, suggesting that these nucleotides are responsible for the regulation of translation initiation. The diversity of preferred nucleotide sequences around the initiation codon might be explained by differences in relative contributions from two distinct patterns, GCCGCCAUG and AAAAAAAUG, which implies the presence of multiple molecular mechanisms for controlling translation initiation.  相似文献   

5.
The coding region for the structural and nonstructural polypeptides of the type A12 foot-and-mouth disease virus genome has been identified by nucleotide sequencing of cloned DNA derived from the viral RNA. In addition, 704 nucleotides in the 5' untranslated region between the polycytidylic acid tract and the probable initiation codon of the first translated gene, P16-L, have been sequenced. This region has several potential initiation codons, one of which appears to be a low-frequency alternate initiation site. The coding region encompasses 6,912 nucleotides and ends in a single termination codon, UAA, located 96 nucleotides upstream from a 3'-terminal polyadenylic acid tract. Microsequencing of radiolabeled in vivo and in vitro translation products identified the genome position of the major foot-and-mouth disease virus proteins and the cleavage sites recognized by the putative viral protease and an additional protease(s), probably of cellular origin, to generate primary and functional foot-and-mouth disease virus polypeptides.  相似文献   

6.
Thousands of proteins make up a chloroplast, but fewer than 100 are encoded by the chloroplast genome. Despite this low number, expression of chloroplast-encoded genes is essential for plant survival. Every chloroplast has its own gene expression system with a major regulatory point at the initiation of protein synthesis (translation). In chloroplasts, most protein-encoding genes contain elements resembling the ribosome binding sites (RBS) found in prokaryotes. In vitro, these putative chloroplast ribosome binding sequences vary in their ability to support translation. Here we report results from an investigation into effects of the predicted RBS for the tobacco chloroplast atpI gene on translation in vivo. Two reporter constructs, differing only in their 5'-untranslated regions (5'UTRs) were stably incorporated into tobacco chloroplast genomes and their expression analyzed. One 5'UTR was derived from the wild-type (WT) atpI gene. The second, Holo-substitution (Holo-sub), had nonchloroplast sequence replacing all wild-type nucleotides, except for the putative RBS. The abundance of reporter RNA was the same for both 5'UTRs. However, translation controlled by Holo-sub was less than 4% that controlled by WT. These in vivo experiments support the idea that translation initiation in land plant chloroplasts depends on 5'UTR elements outside the putative RBS.  相似文献   

7.
Translation of eukaryotic mRNAs is often regulated by nucleotides around the start codon. A purine at position −3 and a guanine at position +4 contribute significantly to enhance the translation efficiency. Algorithms to predict the translation initiation site often fail to predict the start site if the sequence context is not present. We have developed a neural network method to predict the initiation site of mRNA sequences that lack the preferred nucleotides at the positions −3 and +4 surrounding the translation initiation site. Neural networks of various architectures comprising different number of hidden layers were designed and tested for various sizes of windows of nucleotides surrounding translation initiation sites. We found that the neural network with two hidden layers showed a sensitivity of 83% and specificity of 73% indicating a vastly improved performance in successfully predicting the translation initiation site of mRNA sequences with weak Kozak context. WeakAUG server is freely available at http://bioinfo.iitk.ac.in/AUGPred/.  相似文献   

8.
Translation initiation by internal ribosome binding is a recently discovered mechanism of eukaryotic viral and cellular protein synthesis in which ribosome subunits interact with the mRNAs at internal sites in the 5' untranslated RNA sequences and not with the 5' methylguanosine cap structure present at the extreme 5' ends of mRNA molecules. Uncapped poliovirus mRNAs harbor internal ribosome entry sites (IRES) in their long and highly structured 5' noncoding regions. Such IRES sequences are required for viral protein synthesis. In this study, a novel poliovirus was isolated whose genomic RNA contains two gross deletions removing approximately 100 nucleotides from the predicted IRES sequences within the 5' noncoding region. The deletions originated from previously in vivo-selected viral revertants displaying non-temperature-sensitive phenotypes. Each revertant had a different predicted stem-loop structure within the 5' noncoding region of their genomic RNAs deleted. The mutant poliovirus (Se1-5NC-delta DG) described in this study contains both stem-loop deletions in a single RNA genome, thereby creating a minimum IRES. Se1-5NC-delta DG exhibited slow growth and a pinpoint plaque phenotype following infection of HeLa cells, delayed onset of protein synthesis in vivo, and defective initiation during in vitro translation of the mutated poliovirus mRNAs. Interestingly, the peak levels of viral RNA synthesis in cells infected with Se1-5NC-delta DG occurred at slightly later times in infection than those achieved by wild-type poliovirus, but these mutant virus RNAs accumulated in the host cells during the late phases of virus infection. UV cross-linking assays with the 5' noncoding regions of wild-type and mutated RNAs were carried out in cytoplasmic extracts from HeLa cells and neuronal cells and in reticulocyte lysates to identify the cellular factors that interact with the putative IRES elements. The cellular proteins that were cross-linked to the minimum IRES may represent factors playing an essential role in internal translation initiation of poliovirus mRNAs.  相似文献   

9.
10.
11.
12.
13.
The complete nucleotide sequences of the vesicular stomatitis virus (VSV) mRNA's encoding the N and NS proteins have been determined from the sequences of cDNA clones. The mRNA encoding the N protein is 1,326 nucleotides long, excluding polyadenylic acid. It contains an open reading frame for translation which extends from the 5'-proximal AUG codon to encode a protein of 422 amino acids. The N and mRNA is known to contain a major ribosome binding site at the 5'-proximal AUG codon and two other minor ribosome binding sites. These secondary sites have been located unambiguously at the second and third AUG codons in the N mRNA sequence. Translational initiation at these sites, if it in fact occurs, would result in synthesis of two small proteins in a second reading frame. The VSV and mrna encoding the NS protein is 815 nucleotides long, excluding polyadenylic acid, and encodes a protein of 222 amino acids. The predicted molecular weight of the NS protein (25,110) is approximately one-half of that predicted from the mobility of NS protein on sodium dodecyl sulfate-polyacrylamide gels. Deficiency of sodium dodecyl sulfate binding to a large negatively charged domain in the NS protein could explain this anomalous electrophoretic mobility.  相似文献   

14.
A novel Bombyx mori cypovirus 1 isolated from infected silkworm larvae and tentatively assigned as Bombyx mori cypovirus 1 isolate Suzhou (BmCPV-SZ). The complete nucleotide sequences of genomic segments S1-S10 from BmCPV-SZ were determined. All segments possessed a single open reading frame; however, bioinformatic evidence suggested a short overlapping coding sequence in S1. Each BmCPV-SZ segment possessed the conserved terminal sequences AGUAA and GUUAGCC at the 5' and 3' ends, respectively. The conserved A/G at the -3 position in relation to the AUG codon could be found in the BmCPV-SZ genome, and it was postulated that this conserved A/G may be the most important nucleotide for efficient translation initiation in cypoviruses (CPVs). Examination of the putative amino acid sequences encoded by BmCPV-SZ revealed some characteristic motifs. Homology searches showed that viral structural proteins VP1, VP3, and VP4 had localized homologies with proteins of Rice ragged stunt virus , a member of the genus Oryzavirus within the family Reoviridae. A phylogenetic tree based on RNA-dependent RNA polymerase sequences demonstrated that CPV is more closely related to Rice ragged stunt virus and Aedes pseudoscutellaris reovirus than to other members of Reoviridae, suggesting that they may have originated from common ancestors.  相似文献   

15.
cDNA clones representing the entire genome of human rhinovirus 2 have been obtained and used to determine the complete nucleotide sequence. The genome consists of 7102 nucleotides and possesses a long open reading frame of 6450 nucleotides; this reading frame is initiated 611 nucleotides from the 5' end and stops 42 nucleotides from the polyA tract. The N-terminal sequences of three of the viral capsid proteins have been elucidated, thus defining the positions of three cleavage sites on the polyprotein. The extensive amino acid sequence homology with poliovirus and human rhinovirus 14 enabled the other cleavage sites to be predicted. Cleavages in the 3' half of the molecule appear to take place predominantly at Gln-Gly pairs, whereas those in the 5' half (including the capsid proteins) are more heterogeneous.  相似文献   

16.
GB viruses A and C (GBV-A and GBV-C) are two recently described RNA viruses which appear to be members of the Flaviviridae. Although both viruses appear to contain long 5' nontranslated regions, the sites of polyprotein initiation and the presence of core-like proteins remain to be determined. Translation studies were undertaken to determine the mechanism and sites of polyprotein initiation in GBV-A and GBV-C. Rabbit reticulocyte lysates programmed with monocistronic RNAs containing 5' ends of GBV-A or GBV-C fused in-frame with the chloramphenicol acetyltransferase (CAT) open reading frame generated GBV-CAT fusion proteins in vitro. Site-specific mutagenesis and N-terminal sequencing located the sites of translation initiation immediately upstream of the putative signal sequence for the GBV E1 envelope glycoproteins. Efficient translation of the monocistronic GBV-CAT RNAs required the inclusion of GBV coding sequences. This, coupled with the presence of at least 523 nucleotides of 5' nontranslated RNA containing multiple AUG codons, suggests that translation initiation of these RNAs did not utilize a ribosome scanning mechanism. Translation of bicistronic RNAs containing 5' nontranslated sequences within the intercistronic space was consistent with the presence of a weakly active internal ribosome entry site in both GBV-A and GBV-C. Secondary structure predictions indicate that the 5' ends of these viruses assume similar complex structures distinct from those identified in the internal ribosome entry site-containing picornaviruses, pestiviruses, and hepatitis C viruses. The data indicate that GBV-A and GBV-C are unique members of the Flaviviridae that do not contain core-like proteins at the N termini of their putative polyproteins.  相似文献   

17.
18.
19.
S Forss  K Strebel  E Beck    H Schaller 《Nucleic acids research》1984,12(16):6587-6601
A continuous 7802 nucleotide sequence spanning the 94% of foot and mouth disease virus RNA between the 5'-proximal poly(C) tract and the 3'-terminal poly(A) was obtained from cloned cDNA, and the total size of the RNA genome was corrected to 8450 nucleotides. A long open reading frame was identified within this sequence starting about 1300 bases from the 5' end of the RNA genome and extending to a termination codon 92 bases from its polyadenylated 3' end. The protein sequence of 2332 amino acids deduced from this coding sequence was correlated with the 260 K FMDV polyprotein. Its processing sites and twelve mature viral proteins were inferred from protein data, available for some proteins, a predicted cleavage specificity of an FMDV encoded protease for Glu/Gly(Thr, Ser) linkages, and homologies to related proteins from poliovirus. In addition, a short unlinked reading frame of 92 codons has been identified by sequence homology to the polyprotein initiation signal and by in vitro translation studies.  相似文献   

20.
Dinucleotide frequencies are useful for characterizing consensus elements as a minimum unit of nucleotide sequence because the neighborhood relations of nucleotide sequences are reflected in dinucleotides. Using a consensus score based on dinucleotide frequencies and intra-species codon usage heterogeneity, denoted by the Z1 parameter, we report the relationship between nucleotide conservation at the translation initiation sites of genes in the Escherichia coli K-12 genome (W3110) and codon usage in its downstream genes. Significant positive correlations were obtained in three regions centered at -13, -4, and +7, which correspond to the Shine-Dalgarno element, the A + T element immediately upstream of the translation initiation site, and the downstream box, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号