首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The conformational analysis of the CD spectrum is reported for the synthetic and membrane-modifying nonadecapeptide analog of alamethicin N-t-Boc-(Aib-L -Ala)5-Gly-Ala-Aib-Pro-Ala-Aib-Aib-Glu(OBzl)- Gln-OMe. The CD data are evaluated according to three different methods and are discussed with respect to those obtained from natural alamethicin and suitable models such as N-t-Boc-(Aib-L -Ala)7-OPOE, fragments of the synthetic nonadecapeptide, and the hexadecapeptide N-t-Boc-(Aib-L -Ala)5-Pro-Ala-Aib-Aib-Glu(OBzl)-Gln-OMe. The synthetic nonadecapeptide with the longer helical region exhibits membrane activities comparable to those of alamethicin, whereas the hexadecapeptide with the shorter helix is inactive.  相似文献   

2.
The CD spectra of the peptides Boc-X-(Aib-X)n-OMe (n = 1, 2, 3) and Boc-(Aib-X)5-OMe, where X = L -Ala or L -Val have been examined in several solvents. The X = Ala and Val peptides behave similarly in all solvents, suggesting that the Aib residues dominate the folding preferences of these peptides. The decapeptides adopt helical conformations in methanol and trifluoroethanol, with characteristic negative CD bands at 222 and 205 nm. In the heptapeptides, similar spectra with reduced intensities are observed. Comparison with nmr studies suggest that estimates of helical content in oligopeptides by CD methods may lead to erroneous conclusions. The pentapeptides yield solvent-dependent spectra indicative of conformational perturbations. Peptide association in dioxane results in an unusual spectrum with a single negative band at 210 nm for the decapeptides. Disaggregation is induced by the addition of methanol or water to dioxane solutions. Aggregation of the heptapeptides is less pronounced in dioxane, suggesting that a critical helix length may be necessary to promote association stabilized by helix dipole–dipole interactions.  相似文献   

3.
The conformation of oligopeptides with hydrophobic side chains, Nps-(L -Leu-L -Leu-L -Ala)n-OEt and Nps-(L -Met-L -Met-L -Leu)n-OEt(n = 1–6), in the solid state, obtained either by evaporation of the solvent or by precipitation with diethyl ether from a 1,1,1,3,3,3-hexafluoropropan-2-ol (HFIP) solution, has been studied with ir spectroscopy and x-ray powder-diffraction measurements. The conformation of these peptides in the HFIP solution has been studied by CD spectroscopy. Due to a strong preference of the amino acids to form an α helix, the peptides begin forming α helices at the dodecapeptide in the HFIP solution, and in the solid state by evaporation. In the solid state, with precipitation, the α-helical conformation is first observed at the octadecapeptide and the lower peptides assume a β structure. The conformational change, from the α helix to the β structure of the peptides with 12 to 15 amino acid residues, during the precipitation process, is due to a strong tendency of the amino acids to form the β-structure in rather short peptide lengths.  相似文献   

4.
Ac-(Aib-Ala)3-OH (a protected segment of the peptaibols gliodeliquescin and paracelsin), Z-Leu-Aib-Val-Aib-Gly-OtBu (a segment of [Leu]7-gliodeliquescin), Z-Val-Aib-Aib-Gln-OtBu (a common segment of alamethicin, paracelsin, and hypelcin), and Ac-Aib-Pro-(Aib-Ala)2-OMe and Z-Aib-Pro-(Aib-Ala)2-OMe, which represent differently Nα-protected 1–6 segments of alamethicin and hypelcin, have been synthesized by solution methods. The crystal-state conformations of these five Aib-containing peptides have been determined by X-ray diffraction analysis. We have confirmed that the 310-helical structure is preferentially adopted by Aib-rich short peptides. An experimentally unambiguous proof for the 310→α-helix conversion has been provided by the two differently N-blocked -Aib-Pro-(Aib-Ala)2-OMe hexapeptides. The β-bend ribbon conformation, commonly observed in the (Aib-Pro)n sequential oligopeptides, is not found in the -Aib-Pro-Aib-Ala-Aib-Ala- sequence. As expected on the basis of the l -configuration of the Cα-monoalkylated residues, a right-handed helix screw sense was found in all peptides investigated. © 1998 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

5.
A A Ribeiro  R Saltman  M Goodman 《Biopolymers》1985,24(12):2431-2447
The syntheses of three series of glutamate oligopeptides attached to a macromolecular solubilizing polyoxyethylene (POE) group Boc-[Glu(OMe)]n-OPOE, Ac-[Glu(OMe)]n-OPOE, pGlu-[Glu(OMe)]n?1-OPOE (n ? 1–7) and their various analogs specifically deuterated at individual α-CH positions using the liquid-phase method of peptide synthesis are described. It was shown that stepwise synthesis using the symmetrical anhydride gave homo-oligopeptides that are analytically pure. Fragment condensation methods using DCC-HOBt yield POE-peptides with POE-HOBt impurities but the peptide synthesis may be carried stoichiometrically with smaller quantities of amino acid derivatives. 360 MHz 1H-nmr conformational studies of these homo-oligopeptides in DMSO-d6 are presented. The α-deuterated peptides are shown to allow unequivocal homoligopeptide backbone NH assignments.  相似文献   

6.
The decapeptides Boc-(Aib-L -Ala)5-OMe and Boc-(Aib-L -Val)5-OMe have been studied by 270-MHz 1H-nmr in CDCl3 and (CD3)2SO solutions. Intramolecular hydrogen-bonded NH groups have been delineated using the temperature and solvent dependence of the NH chemical shifts and differential broadening of the NH resonances, induced by addition of a nitroxide radical. Both peptides have eight solvent-shielded NH groups, suggesting that 310-helical conformations are maintained in the two solvents. In alternating Aib-X sequences, the Aib residues appear to play a dominant role in determining the preferred conformations, overriding the intrinsic stereochemical preferences of the X residues.  相似文献   

7.
A newly designed host–guest approach is introduced as a experimental tool to explore the relationship between the sequence of peptides and their secondary structure. From the CD spectra of the host–guest peptides studied, a tentative scale for the α-helix potential in 2,2,2-trifluorethanol of guest amino acids is delineated. The conformational preferences are also examined in β-structure supporting media (solid state, CH2Cl2, CH3OH, H2O) using ir-absorption and CD techniques. Scales for the β-forming tendency of guest amino acid residues in the different media are delineated. It is shown that the preferred conformation of the host–guest peptides is a function of the medium, the chain length, and the protecting groups. Given the fact that conformational effects are important in peptide synthesis, the tentative scales may serve as a guideline to predict secondary structures of side-chain-protected or -deprotected peptides in a given solvent, complementing the well-known empirical conformational prediction parameters.  相似文献   

8.
Abstract

To assess the minimal peptide length required for the stabilization of the a-helix relative to the 310-helix in Aib-rich peptides, we have solved the X-ray diffraction structures of the terminally blocked sequential hexa- and octapeptides with the general formula -(Aib-L-Ala)n-(n = 3 and 4, respectively). The hexapeptide molecules are completely 310-helical with four 1 ← 4 intramolecular N-H … O=C H-bonds. On the other hand, the octapeptide molecules are essentially α-helical with four 1 ← 5 H-bonds; however, the helix is elongated at the N-terminus, with two 1 ← 4 H-bonds, giving these molecules a mixed α/310-helical character. In both compounds the right-handed screw sense of the helix is dictated by the presence of the Ala residues of L-configuration. This study represents the first experimental proof for a 310 →α-helix conversion in the crystal state induced by peptide backbone lengthening only.  相似文献   

9.
Two series of peptides with hydrophobic side chains, Nps-(L -Leu-L -Leu-L -Ala)n-OEt and Nps-(L -Met-L -Met-L Leu)n-OEt (n = 1–6), were synthesized by the fragment condensation method using dicyclohexylcarbodiimide in the presence of N-hydroxysuccinimide. The tripeptide fragments were prepared stepwise by dicyclohexylcarbodiimide-mediated reaction of Nps-amino acids, which were synthesized by an improved rapid procedure.  相似文献   

10.
The conformational properties of α,α-dialkylated amino acid residues possessing acyclic (diethylglycine, Deg: di-n-propylglycine, Dpg; di-n-butylglycine, Dbg) and cyclic (1-amino-cycloalkane-1-carboxylic acid, Acnc) side chains have been compared in solution. The five peptides studied by nmr and CD spectroscopy are Boc-Ala-Xxx-Ala-OMe, where Xxx = Deg(I). Dpg (II), Dbg (III), Ac6c (IV), and Ac7c (V). Delineation of solvent-shielded NH groups have been achieved by solvent and temperature dependence of NH chemical shifts in CDCl3 and (CD3)2SO and by paramagnetic radical induced line broadening in pepiide III. In the Dxg peptides the order of solvent exposure of NH groups is Ala(1) > Ala(3) > Dxg(2), whereas in the Acnc peptides the order of solvent exposure of NH groups is Ala(1) > Acnc(2) > Ala(3). The nmr results suggest that Acnc peptides adopt folded β-turn conformations with Ala(1) and Acnc(2) occupying i + 1 and i + 2 positions. In contrast, the Dxg peptides favor extended C5 conformations. The conformational differences in the two series are clearly borne out in CD studies. The solution conformations of peptides I-III are distinctly different from the β-turn structure observed in crystals. Low temperature nmr spectra recorded immediately after dissolution of crystals of peptide II provide evidence for a structural transition. Introduction of an additional hydrogen-bonding function in Boc-Ala-Dpg-Ala-NHMe (VI) results in a stabilization of a consecutive β-turn or incipient 310-helix in solution. © 1995 John Wiley & Sons, Inc.  相似文献   

11.
The primary structure and conformation of the polypeptide antibiotic suzukacillin A are investigated. Suzukacillin A isolated from the Trichoderma viride strain 1037 and exhibits membrane modifying and lysing properties similar to those of alamethicin.A combined gas chromatographic mass spectrometric analysis of the trifluoroacetylated peptide methyl esters of partial hydrolysates revealed a tentative sequence of 23 residues including 10 2-methylalanines and one phenylalaninol, which shows many fragments known from alamethicin: Ac-Aib-Pro-Val-Aib-Val-Ala-Aib-Ala-Aib-Aib-Gln-Aib-Leu-Aib-Gly-Leu-Aib-Pro-Val-Aib-Aib-Glu(Pheol)-Gln-OH. All chiral amino acids and phenylalaninol have l-configuration. Ultraviolet and infrared spectroscopy, circular dichroism in various solvents and in particular 13C nuclear magnetic resonance have been used for a comparative study of suzukacillin with alamethicin. Suzukacillin has a partially α-helical structure and the helix content increases largely from polar to lipophilic solvents. Suzukacillin aggregates more strongly than alamethicin in aqueous media due to a longer α-helical part and higher number of aliphatic residues. A part of the α-helix is exceptionally stabilized due to 2-methylalanine residues shielding the peptide bonds from interactions with polar solvents. In lipophilic solvents and lecithin vesicles particularly large temperature induced reductions of the high α-helix content are found for alamethicin. Suzukacillin shows similar temperature coefficients in lipophilic media, however, in contrast to alamethicin a more linear change in intensity of the Cotton effects is observed.  相似文献   

12.
The solution structure of a peptide fragment corresponding to the 38–59 region of porcine phospholipase A2 has been investigated using CD, nmr chemical shifts, and nuclear over-hauser effects (NOEs). This isolated fragment of phospholipase forms an α-helix spanning residues 38–55, very similar to the one found in the native protein, except for residues 56–58, which were helical in the crystal but found random in solution. Addition of triflouro-ethanol (TFE) merely increased helix population but it did not redefine helix limits. To investigate how the folding information, in particular that concerning eventual helix start and stop signals, was coded in this particular amino acid sequence, the helices formed by synthetic peptides reproducing sections of this phospholipase 38–59 fragment, namely 40–59, 42–59, 38–50, and 45–57, were characterized using NOEs and helix populations quantitatively evaluated on different peptide chain segments using nmr chemical shifts in two solvents (H2O and 30% TFE/H2O). A set of nmr spectra was also recorded and assigned under denaturing conditions (6Murea) to obtain reliable values for the chemical shifts of each peptide in the random state. Based on chemical shift data, it was concluded that the helix formed by the phospholipase 38–59 fragment was not abruptly, but progressively, destabilized all along its length by successive elimination of residues at the N end, while the removal of residues at the C end affected helix stability more locally and to a lesser extent. These results are consistent with the idea that there are not single residues responsible for helix initiation or helix stability, and they also evidence an asymmetry for contributions to helix stability by residues located at the two chain ends. The restriction of molecular mobility caused by linking with a disulphide bridge at Cys 51 two identical 38–59 peptide chains did not increase helix stability. The helix formed by the covalently formed homodimer was very similar in length and population to that formed by the monomer. © 1994 John Wiley & Sons, Inc.  相似文献   

13.
The conformational transitions of synthetic basic polytripeptides (Lys-Leu-Gly)n, (A2bu-Leu-Gly)n, (Lys-Leu-Ala)n, and (A2bu-Leu-Ala)n induced by high salt concentrations and elevated pH were investigated by CD, ir, and 1H-nmr spectroscopy, sedimentation analysis, viscometry, and light scattering. Sheet aggregates of chains in a conformation similar to the polyglycine II (polyproline II) helix, bound together by hydrogen bonds, are the most probable form of (Lys-Leu-Gly)n and also, partly, of (A2bu-Leu-Gly)n in a high-pH or high-salt solutions. The conformation (Lys-Leu-Ala)n, in a low-salt concentration, is an α-helix. Since (A2bu-Leu-Ala)n is disordered under similar conditions, it appears that this α-helix is stabilized by hydrophobic interactions between Lys and Leu side chains. In a high concentration of water structure-making ions, CD data for (Lys-Leu-Ala)n indicate distortion of the α-helix, with a parallel increase in the average molecular weight corresponding to trimer formation. Hydrodynamic data are consistent with a model of bundles of three closely touching spherocylinders. (A2bu-Leu-Ala)n shows a limited tendency to α-helix formation.  相似文献   

14.
Z-Dehydrophenylalanine (ΔzPhe) possessing four oligopeptides, Boc-(L -Ala-ΔzPhe-Aib)n-OCH3 (n = 1–4: Boc, t-butoxycarbonyl; Aib, α-aminoisobutyric acid), were synthesized, and their solution conformations were investigated by 1H-nmr, ir, uv, and CD spectroscopy and theoretical CD calculation. 1H-nmr (the solvent accessibility of NH groups) and ir studies indicated that all the NH groups except for those belonging to the N-terminal L -Ala-ΔzPhe moiety participate in intramolecular hydrogen bonding in chloroform. This suggests that the peptides n = 2–4 have a 4 → 1 hydrogen-bonding pattern characteristic of 310-helical structures. The uv spectra of all these peptides recorded in chloroform and in trimethyl phosphate showed an intense maximum around 276 nm assigned to the ΔzPhe chromophores. The corresponding CD spectra of the peptides n = 2–4 showed exciton couplets with a negative peak at longer wavelengths, whereas that of the peptide n = 1 showed only weak signals. Theoretical CD spectra were calculated for the peptides n = 2–4 of several helical conformations, on the basis of exciton chirality method. This calculation indicated that the three peptides form a helical conformation deviating from the perfect 310-helix that contains three residues per turn, and that their side chains of Δz Phe residues are arranged regularly along the helix. The center-to-center distance between the nearest phenyl pair(s) was estimated to be ~ 5.5 Å. The chemical shifts of the ΔzPhe side-chain protons (Hβ and aromatic H) for the peptides n = 2–4 indicated anisotropic shielding effect of neighboring phenyl group(s); the effect also supports a regular arrangement of the Δz Phe side chains along the helical axis. © 1993 John Wiley & Sons, Inc.  相似文献   

15.
We have recorded high-resolution 13C-nmr spectra of collagen fibrils in the solid state by the cross-polarization–magic-angle-spinning(CP–MAS)method and analyzed the spectra with reference to those of collagenlike polypeptides. We used two kinds of model polypeptides to obtain reference 13C chemical shifts of major amino acid residues of collagen (Gly, Pro, Ala, and Hyp): the 31-helical polypeptides [(Gly)nII, (Pro)nII, (Hyp)n, and (Ala? Gly? Gly)nII], and the triple-helical polypeptides [(Pro? Gly? Pro)n and (Pro? Ala? Gly)n]. Examination of the 13C chemical shifts of these polypeptides, together with our previous data, showed that the 13C chemical shifts of individual amino acid residues are the same, within experimental error (±0.5 ppm), among different polypeptides with different primary sequences, if the conformations are the same. We found that the 13C chemical shifts of Ala residues of the 31-helical (Ala? Gly? Gly)n and triple-helical (Pro? Ala? Gly)n are significantly displaced, compared with those of the α-helix, β-sheet, and silk I form, and can be utilized as excellent probes to examine conformational features of collagen-like polypeptides. Further, the 13C chemical shifts of Gly and Pro residues in the triple-helical polypeptides are substantially displaced from those found in (Gly)nII and (Pro)nII of the 31-helix, reflecting further conformational change from the 31-helix to the supercoiled triple helix. In particular, the 13C chemical shifts of Gly C ? O carbons of the triple-helical polypeptides are substantially displaced upfield (4.1–5.1 ppm), with respect to those of the 31-helical polypeptides. These displacements are interpreted by that Gly C ? O of the former is not involved in NH …? O ? C hydrogen bonds, while this carbon of the latter is linked by these kinds of hydrogen bonds. On the basis of these 13C chemical shifts, as reference data for the collagenlike structure, we were able to assign the 13C-nmr peaks of Gly, Ala, Pro, and Hyp residues of collagen fibrils, which are in good agreement with the values expected from the model polypeptides mentioned above. We also discuss a plausible conformational change of collagen fibrils during denaturation.  相似文献   

16.
Proline-induced constraints in alpha-helices   总被引:9,自引:0,他引:9  
L Piela  G Némethy  H A Scheraga 《Biopolymers》1987,26(9):1587-1600
The disrupting effect of a prolyl residue on an α-helix has been analyzed by means of conformational energy computations. In the preferred, nearly α-helical conformations of Ac-Ala4-Pro-NHMe and of Ac-Ala7-Pro-Ala7-NHMe, only the residue preceding Pro is not α-helical, while all other residues can occur in the α-helical A conformation; i.e., it is sufficient to introduce a conformational change of only one residue in order to accommodate proline in a distorted α-helix. Other low-energy conformations exist in which the conformational state of three residues preceding proline is altered considerably; on the other hand, another conformation in which these three residues retain the near-α-helical A-conformational state (with up to 26° changes of their dihedral angles ? and ψ, and a 48° change in one ω from those of the ideal α-helix) has a considerably higher energy. These conclusions are not altered by the substitution of other residues in the place of the Ala preceding Pro. The conformations of the peptide chain next to prolyl residues in or near an α-helix have been analyzed in 58 proteins of known structure, based on published atomic coordinates. Of 331 α-helices, 61 have a Pro at or next to their N-terminus, 21 have a Pro next to their C-terminus, and 30 contain a Pro inside the helix. Of the latter, 16 correspond to a break in the helix, 9 are located inside distorted first turns of the helix, and 5 are parts of irregular helices. Thus, the reported occurrence of prolyl residues next to or inside observed α-helices in proteins is consistent with the computed steric and energetic requirements of prolyl peptides.  相似文献   

17.
The sequential copolypeptides (Lys-Phe-Lys)n and (Lys2-Phe-Lys)n and a series of related random copolypeptides were investigated with respect of their ability to adopt the α-helix or β-conformation. Conformational transitions were induced by increasing the pH or by addition of NaClO4 or methanol and were observed by recording the CD spectra. In contrast to the respective alternating copolypeptide (Phe-Lys)n with its strong tendency for the β-structure reported previously, (Lys-Phe-Lys)n can adopt either secondary structure, whereas (Lys2-Phe-Lys)n strongly favors the α-helix. Together with the random copolypeptides, whose composition varied from 20 to 50 mol % phenylalanine and whose average molecular weights ranged from 10,000 to 90,000, the influence of the phenylalanine content and of the chain length on conformational stability and the rotatory strength of the respective secondary structures were elaborated.  相似文献   

18.
Terminally blocked (L-Pro-Aib)n and Aib-(L-Pro-Aib)n sequential oligopeptides are known to form right-handed β-bend ribbon spirals under a variety of experimental conditions. Here we describe the results of a complete CD and ir characterization of this subtype of 310-helical structure. The electronic CD spectra were obtained in solvents of different polarity in the 260-180 nm region. The vibrational CD and Fourier transform ir (FTIR) spectra were measured in deuterochloroform solution in the amide I and amide II (1750-1500 cm?1) regions. The critical chain length for full development of the β-bend ribbon spiral structure is found to be five to six residues. Spectral effects related to concentration-induced stabilization of the structures of the longer peptides were seen in the resolution-enhanced FTIR spectra. Comparison to previous studies of (Aib)n and (Pro)n oligomers indicate that the low frequency of the amide I mode is due to the interaction of secondary and tertiary amide bonds and not to a strong difference in conformation from a regular 310-helix. © 1995 John Wiley & Sons, Inc.  相似文献   

19.
By means of conformational energy calculations, we previously showed that the antigenic strength of a series of oligopeptides (derived from the carboxyl terminal sequence of cytochrome c) in a T-lymphocyte proliferation assay depends on their ability to adopt the α-helix conformation. Using experimentally determined statistical weights (within the framework of the Zimm–Bragg theory for the helix–coil transition), here we present a simple free energy analysis of the ability of these peptides to adopt the α-helix conformation in water. The experimental statistical weights have been modified to include the effect of long-range charge–dipole interactions on helix stability. We find that there is a close correlation between the tendency of a peptide to adopt the α-helix conformation and its ability to stimulate antigen-primed T cells. The shortest peptide with a tendency to adopt the α-helix conformation is also the shortest one that exhibits antigenic activity. The rapid and simple method presented here can thus be used to predict relative antigenicities for different peptides derived from cytochrome c.  相似文献   

20.
α-Aminoisobutyric acid (Aib) is a helicogenic α,α-dimethyl amino acid found in channel-forming peptaibols such as alamethicin. Possible effects of Aib on helix–helix packing are analyzed. Simulated annealing via restrained molecular dynamics is used to generate ensembles of approximately parallel helix dimers. Analysis of variations in geometrical and energetic parameters within ensembles defines how tightly a pair of helices interact. Simple hydrophobic helix dimers are compared: Ala20, Leu20, Aib20, and P20, the latter a simple channel-forming peptide [G. Menestrina, K. P. Voges, G, Jung, and G. Boheim (1986) Journal of Membrane Biology, Vol. 93, pp. 111–132]. Ala20 and Leu20 dimers exhibit well-defined ridges-in-grooves packing with helix crossing angles (Ω) of the order of +20°. Aib20 α-helix dimers are much more loosely packed, as evidenced by a wide range of Ω values and small helix-helix interaction energies. However, when in a 310 conformation Aib20 helices pack in three well-defined parallel modes, with Ω ca. ?15°, +5°, and 10°. Comparison of helix–helix interaction energies suggests that dimerization may favor the 310 conformation. P20, with 8 Aib residues, also shows looser packing of α-helices. The results of these studies of hydrophobic helix dimers are analyzed in the context of the ridges-in-grooves packing model. Simulations are extended to dimers of alamethicin, and of an alamethicin derivative in which all Aib residues are replaced by Leu. This substitution has little effect on helix–helix packing. Rather, such interactions appear to be sensitive to interactions between polar side chains. Overall, the results suggest that Aib may modulate the packing of simple hydrophobic helices, in favor of looser interactions. For more complex amphipathic helices, interactions between polar side chains may be more critical. © 1995 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号