首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 4 毫秒
1.
A novel amperometric immunosensor for determination of human serum chorionic gonadotrophin (HCG) was constructed by immobilization of HCG with titania sol-gel on a glassy carbon electrode and the direct electrochemistry of horseradish peroxidase (HRP) labeled to HCG antibody (HRP-anti-HCG). The morphologies of the HCG membrane were characterized to be chemically clean, porous and homogeneous. HRP-anti-HCG was functionally conjugated with the immobilized HCG after incubation in phosphate buffer (PBS) containing HRP-anti-HCG. A direct electron transfer of HRP with a rate constant of 1.35+/-0.40 s(-1) was observed at the HRP-anti-HCG-HCG/titania sol-gel membrane modified electrode in 0.1 M PBS pH 7.0. With a competitive mechanism the differential pulse voltammetric peak current of the immobilized HRP decreased linearly with an increasing HCG concentration from 2.5 to 12.5 mIU/ml in the incubation solution. The HCG immunosensor showed a detection limit of 1.4 mIU/ml, a good accuracy and acceptable precision and reproducibility with an intra-assay CV of 4.7% at 5.0 mIU/ml and an inter-assay precision of 8.1% obtained at 10 mIU/ml. The biosensor displayed a good stability in a storage period of 30 days.  相似文献   

2.
Jiaojiao  Xia  Bin  Zou  Pengyun  Wang  Qing  Luo  Xin  Shen  Rui  Ji 《Bioprocess and biosystems engineering》2020,43(2):293-301
Bioprocess and Biosystems Engineering - Long-term and excessive use of monocrotophos (MPs) pesticide leads to an accumulation of MPs residues in agricultural products. Electrochemical biosensor...  相似文献   

3.
Stable films of didodecyldimethylammonium bromide (DDAB, a synthetic lipid) and horseradish peroxidase (HRP) were made by casting the mixture of the aqueous vesicle of DDAB and HRP onto the glassy carbon (GC) electrode. The direct electron transfer between electrode and HRP immobilized in lipid film has been demonstrated. The lipid films were used to supply a biological environment resembling biomembrane on the surface of the electrode. A pair of redox peaks attributed to the direct redox reaction of HRP were observed in the phosphate buffer solution (pH 5.5). The cathodic peak current increased dramatically while anodic peak decreased by addition of small amount H(2)O(2). The pH effect on amperometric response to H(2)O(2) was studied. The biosensor also exhibited fast response (5 s), good stability and reproducibility.  相似文献   

4.
Efficient immobilization of enzymes on support surfaces requires an exact match between the surface chemistry and the specific enzyme. A successful match would normally be identified through time consuming screening of conventional resins in multiple experiments testing individual immobilization strategies. In this study we present a versatile strategy that largely expands the number of possible surface functionalities for enzyme immobilization in a single, generic platform. The combination of many individual surface chemistries and thus immobilization methods in one modular system permits faster and more efficient screening, which we believe will result in a higher chance of discovery of optimal surface/enzyme interactions. The proposed system consists of a thiol‐functional microplate prepared through fast photochemical curing of an off‐stoichiometric thiol‐ene (OSTE) mixture. Surface functionalization by thiol‐ene chemistry (TEC) resulted in the formation of a functional monolayer in each well, whereas, polymer surface grafts were introduced through surface chain transfer free radical polymerization (SCT‐FRP). Enzyme immobilization on the modified surfaces was evaluated by using a rhodamine labeled horseradish peroxidase (Rho‐HRP) as a model enzyme, and the amount of immobilized enzyme was qualitatively assessed by fluorescence intensity (FI) measurements. Subsequently, Rho‐HRP activity was measured directly on the surface. The broad range of utilized surface chemistries permits direct correlation of enzymatic activity to the surface functionality and improves the determination of promising enzyme‐surface candidates. The results underline the high potential of this system as a screening platform for synergistic immobilization of enzymes onto thiol‐ene polymer surfaces. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:1267–1277, 2017  相似文献   

5.
The enzyme horseradish peroxidase (HRP) has been entrapped in situ by electropolymerization of pyrrole onto a platinum electrode. The latter was previously coated by a polypyrrole layer for better adhesion of the biocatalyst film and in order to avoid the enzyme folding onto the Pt electrode. The biosensor allowed the determination of hydrogen peroxide in the concentration range comprised between 4.9 x 10(-7) and 6.3 x 10(-4) M. The biosensor retained more than 90% of its original activity after 35 days of use.  相似文献   

6.
A convenient and effective strategy for fabrication of hydrogen peroxide biosensor based on sodium alginate (SA) and polyvinyl butyral (PVB) as matrices was reported in this paper. The horseradish peroxidase (HRP) and SA were electro-co-deposited onto the surface of gold electrode, and the HRP–SA/Au electrode was further coated with PVB. The interaction between HRP and SA was characterized by UV–vis absorption spectroscopy, and the fabricating process of biosensor was characterized by electrochemical impedance spectroscopy (EIS). The electrochemical characteristics of the biosensor were studied by cyclic voltammetry and chronoamperometry. Experimental conditions were investigated which influence the performance of the biosensor, such as pH, and applied potential. The biosensor showed a linear response to H2O2 over a concentration range from 7.0 × 10−6 to 4.1 × 10−3 M with a detection limit of 1.8 × 10−6 M based on a signal-to-noise ratio of 3 under optimum conditions. The value of HRP in the composite was evaluated to be 1.38 mM. The biosensor obtained from this study possesses high sensitivity, good reproducibility, and long-term stability.  相似文献   

7.
The possibility of developing amperometric biosensors for the measurement of SO(2) in flowing gas streams has been examined. Screen-printed carbon electrodes (SPCEs) were tailored with the enzyme sulfite oxidase and cytochrome c and the response is generated through the resulting enzymatic and electrocatalytic reactions involving SO(3)(2-), formed when SO(2) gas is dissolved in the supporting electrolyte. Two methods of integrating the enzyme and cytochrome c with the SPCE were investigated. In one design (b-type biosensor), the components were mixed thoroughly with the same ink used to produce the SPCEs, then the modified ink was spread over the working electrode. In the second approach the bio-components were dissolved in the supporting electrolyte and simply deposited on top of the transducer (s-type biosensor). Both devices gave linear responses over the range 4--50 ppm but the sensitivity of the s-type was approximately twice that of the b-type biosensor. In addition, the time taken to reach 90% of the maximum response (t(90%)) was 110 s for the s-type biosensor compared with 200 s for the b-type biosensor. These studies illustrate the successful use of biosensors for the detection of sulfur dioxide at the relatively low potential of +0.3 V versus Ag.AgCl and should provide useful alternatives for decentralised environmental studies.  相似文献   

8.
9.
10.
A variety of nitrogenous compounds broaden the activity versus pH profile for the peroxidation of dianisidine catalyzed by horseradish peroxidase (HRP), but not by myeloperoxidase, chloroperoxidase, Escherichia coli hydroperoxidase I, methemoglobin, or microperoxidases. The peroxidation of dianisidine catalyzed by cytochrome c peroxidase was affected by the nitrogenous compounds, but to a lesser extent than was the action of HRP. The peroxidations of a variety of phenols by HRP exhibited broad activity versus pH profiles and were unaffected by the nitrogenous compounds. The energy of activation for the peroxidation of dianisidine by HRP was unaffected by changes of pH in the range 6.5-8.5 and was unchanged by the presence of the nitrogenous compounds. The nitrogenous compounds markedly increased Vm for the peroxidation of dianisidine by HRP, but did not change the slope of Lineweaver-Burk plots of kinetic data. These results are accommodated by a mechanism in which nitrogenous compounds hydrogen-bond to the distal histidine of HRP and in so doing raise its pK alpha. Since the acid form of the distal histidine is thought to facilitate peroxidations catalyzed by HRP by hydrogen bonding to the ferryl oxygen of compound II, raising its pK alpha broadens the activity versus pH profile for the peroxidation of anilino substrates, such as dianisidine. We propose that phenolic substrates hydrogen-bond directly to the ferryl oxygen, thus displacing the distal histidine and eliminating the possibility of being influenced by nitrogenous compounds.  相似文献   

11.
This study presents the use of complementary colorimetric and amperometric techniques to measure the quantity of protein or enzyme immobilised onto a carbon paste electrode modified with a layer of electrodeposited polyaniline. By applying a solution of bovine serum albumin at 0.75 mg/ml, efficient blocking of the electrode from electroactive species in the bulk solution could be achieved. When the horseradish peroxidase was immobilised on the electrode, optimal amperometric responses from hydrogen peroxide reduction were achieved at approximately the same concentration. The mass of enzyme immobilised at this solution concentration was determined by a colorimetric enzyme assay to be equivalent to the formation of a protein monolayer. Under these conditions, amperometric responses from the immobilised layer are maximised and non-specific bulk solution interactions are minimised. At higher immobilised protein concentrations, diminished amperometric responses may be due to inhibited diffusion of hydrogen peroxide to enzyme which is in electronic communication with the electrode surface, or impeded electron transfer.  相似文献   

12.
13.
A novel polyaniline-ionic liquid-carbon nanofiber (PANI-IL-CNF) composite was greenly prepared by in situ one-step electropolymerization of aniline in the presence of IL and CNF for fabrication of amperometric biosensors. The scanning electron micrographs confirmed that the PANI uniformly grew along with the structure of CNF and the PANI-IL-CNF composite film showed a fibrillar morphology with the diameter of around 95 nm. A phenol biosensor was constructed by immobilizing tyrosinase on the surface of the composite modified glassy carbon electrode via the cross-linking step with glutaraldehyde. The biosensor exhibited a wide linear response to catechol ranging from 4.0 x 10(-10) to 2.1 x 10(-6)M with a high sensitivity of 296+/-4 AM(-1)cm(-2), a limit of detection down to 0.1 nM at the signal to noise ratio of 3 and applied potential of -0.05 V. According to the Arrhenius equation, the activation energy for enzymatic reaction was calculated to be 38.8 kJmol(-1) using catechol as the substrate. The apparent Michaelis-Menten constants of the enzyme electrode were estimated to be 1.44, 1.33, 1.16, 0.65 microM for catechol, p-cresol, phenol, m-cresol, respectively. The functionalization of CNF with PANI in IL provided good biocompatible platform for biosensing and biocatalysis.  相似文献   

14.
Horseradish peroxidase displayed a ping-pong kinetic reaction mechanism with lignin model compounds and lignins. Oxidation of the α carbon on acetosyringone or acetovanillone failed above pH 6.5, while conversion of α-methylsyringyl (or guaiacyl) alcohol to acetosyringone (or vanillone) occurred optimally at pH 7.8. Small MW fragments were not formed from lignins at pH 6.4 and 7.8. These observations provide evidence for the growing concept that freely soluble peroxidase is not a lignolytic enzyme.  相似文献   

15.
I Morishima  S Ogawa 《Biochemistry》1978,17(21):4384-4388
Enzymatic reaction intermediates of horseradish peroxidase, compounds I and II, were studied by high-resolution nuclear magnetic resonance spectroscopy at 220 MHz. The heme peripheral proton peaks were successfully obtained in the downfield region of 50 to 80 ppm from 4,4-dimethyl-4-silapentane-5-sulfonate for compound I and of 10 to 20 ppm for compound II at pH 9.2. This indicates that no isoporphyrin appears in the catalytic cycle of the enzyme. Temperature dependences of the spectra also were determined for these compounds between 7 and 32 degrees C. With increasing temperature, all the peaks in the downfield region for compound I shifted upfield, obeying the Curie law. These results suggest that the Fe atoms in compounds I and II are in ferryl high- and low-spin states, respectively. The spectrum was also observed in solutions of horse metmyoglobin to which hydrogen peroxide (H2O2) was added. The electron formulations of the hemes in their spectra. Evidence was found against a pi-cation radical on the heme ring as a source of the oxidizing equivalent in compound I.  相似文献   

16.
Electrochemical growth was used to form the organic conducting salt of tetrathiafulvalene (TTF) and tetracyanoquinodimethane (TCNQ) on platinum wires inserted in a glass capillary. Glucose oxidase, lactate oxidase and xanthine oxidase were deposited and crosslinked on the salt structure to produce mediated biosensors responsive to the corresponding analytes. Reliability, stability, interference, and the effect of oxygen on the electrode's response were studied. Among three common electroactive interfering substances tested, ascorbic acid was very active at the TTF-TCNQ structure and the highest response was exhibited by the enzyme-free electrode. Acetaminophen and uric acid displayed similar behaviour at a lower magnitude. The presence of oxygen significantly decreased the current responses of all electrodes.

The xanthine oxidase-bearing mediated electrodes were able to assay the hypoxanthine content of either the fish extract, fish homogenate or slurry of manually ground tissue, yielding results in good agreement with conventional enzymatic assays. The electrodes were stable more than 120 days and could be reused more than 30 times without losing their original activities.  相似文献   


17.
Composite graphite-Teflon electrodes, in which the enzymes alcohol oxidase (AOD) and horseradish peroxidase (HRP), as well as the mediator ferrocene, are incorporated into the electrode matrix, are reported for the reliable monitoring of alcohols in food and beverages. The bienzyme electrodes are constructed by simple physical inclusion of the enzymes and the mediator in the bulk of graphite-70% Teflon rigid cylindrical pellets. The composite biosensors are robust and reusable because of the renewability of the electrode surface by polishing. Reproducible amperometric responses at 0.00 V were obtained with different electrodes constructed from the same pellet and from different pellets. No significant loss of the enzymes activities was found after at least 3 months of storage at 0 degrees C. The detection limits obtained by amperometry in stirred solutions can be advantageously compared with those achieved with commercial sensors for alcohols. The bienzyme electrodes are suitable to be used under flow-injection conditions, as well as for amperometric detection in HPLC. The bioelectrodes were employed for the determination of ethanol in beers, wines and liquors, using both batch- and flow-injection modes, and for the determination of methanol in wines and liquors by HPLC with amperometric detection. Only a dilution of the beverages was needed as sample treatment in all cases.  相似文献   

18.
Two strategies were investigated for the development of lactate biosensors based on sol-gel matrixes and polysulfone composite films, both containing L-lactate dehydrogenase (LDH). Firstly, reagentless disposable screen-printed electrodes (SPE's) with Meldola's Blue (MB) and the cofactor NAD(+) inside a sol-gel matrix were prepared. These showed relatively low sensitivities (260 microA/M). Secondly, mediator-modified-polysulfone-graphite composite films deposited over both cylindrical epoxy-graphite and SPE's. These electrodes showed enhanced performance characteristics: improved sensitivity (80 mA/M), detection limit (0.87 microM) and reproducibility (2%). Reagentless electrodes, incorporating NAD(+) in the polysulfone film, had a decreased sensitivity, although better than that achieved by the sol-gel electrodes. While sol-gel electrodes showed a linear range between 1.25 x 10(-4) and 2.48 x 10(-3)M, the epoxy-graphite composite electrodes based on polysulfone composite films allowed the detection of lactate at a linear range of lower concentrations from 1 x 10(-6) to 1.2 x 10(-5)M. Finally, the performance of the LDH-MB-polysulfone-composite film-based SPE's in a flow system was studied. Short response times were obtained (t<30s). Furthermore, repeatability and reproducibility values were notably improved, especially when working with electrodes covered with a polyamide layer prepared with N-(2-aminoethyl)-piperazine.  相似文献   

19.
The properties of amperometric biosensors based on methanol dehydrogenase (MDH) Methylobacterium nodulans, cells, and the ferrocene-modified carbon paste electrode were investigated. It was shown that the addition of hydroxyapatite (HA) to a carbon paste increased the sensitivity and operating stability of MDH biosensors. The linear range of the electrode was 0.0135–0.5 and 0.032–1.5 mM for methanol and formaldehyde, respectively. The detection limit of methanol and formaldehyde was 4.5 and 11.0 μM, respectively. The loss of activity of the electrode within 10 days of storage in the presence of 2.0 mM KCN did not exceed 12%. Cyanide (10 mM) completely inhibited the sensor responses to formaldehyde (1.0 mM), which allowed for the selective determination of methanol in the presence of formaldehyde. The biosensor based on cells exhibited lower stability and sensitivity toward methanol and formaldehyde; the sensitivity coefficients were 980 and 21 nA/mM, respectively.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号