首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The uptake of 22Na+ and secretion of catecholamines by primary cultures of adrenal medulla cells under the influence of a variety of agonists and antagonists were determined. Veratridine, batrachotoxin, scorpion venom, and nicotine caused a parallel increase in 22Na+ uptake and Ca2+-dependent catecholamine secretion. Ba2+, depolarizing concentrations of K+, and the Ca2+ ionophore Ionomycin stimulated secretion of catecholamines but did not increase the uptake of 22Na+. Tetrodotoxin inhibited both 22Na+ uptake and catecholamine secretion evoked by veratridine, batrachotoxin, and scorpion venom, but had no effect on 22Na+ uptake and catecholamine secretion caused by nicotine. On the other hand, histrionicotoxin, which blocks the acetylcholine receptor-linked ion conductance channel, blocked nicotine-stimulated 22Na+ uptake and catecholamine secretion, but only partially inhibited veratridine-stimulated catecholamine secretion and had no effect on veratridine-stimulated 22Na+ uptake. The combination of veratridine plus tetrodotoxin, which has been shown to prevent nicotine-stimulated secretion of catecholamines by adrenal medulla cells, also prevented nicotine-stimulated 22Na+ uptake by the primary cultures. These studies demonstrate the presence of tetrodotoxin-sensitive Na+ channels in adrenal medulla cells which are functionally linked to Ca2+-dependent catecholamine secretion. However, These channels are not utilized for Na+ entry upon activation of nicotinic receptors; in this case Na+ entry occurs through the receptor-associated ion conductance channel.  相似文献   

2.
We analyzed inward Ca2+ currents in single bovine adrenal glomerulosa cell using whole-cell patch clamp techniques. Two types of voltage-gated Ca2+ channel currents were identified. One was a transient (T) type which decayed within 100 ms, characterized by a low threshold voltage (about -70 mv) similar to that seen in rat adrenal glomerulosa cells (Matsunaga, H. et al. (1987) Pflügers Arch. 408, 351-355.) Another was a long-lasting (L) type which shows a more positive threshold potential. The present results suggest that while T type Ca2+ channels may explain initial calcium influx in response to an elevation in extracellular K+, L type Ca2+ channels may allow sustained calcium influx which is necessary for sustained aldosterone secretion.  相似文献   

3.
4.
In this paper we report that stimulation of mAChRs in PC12D cells activates Ca2+ channels that are regulated independently of intracellular Ca2+ stores. In nominally Ca2+-free medium, exposure of PC12D cells to carbachol stimulates a robust influx of Ba2+, a Ca2+ substitute. This influx is blocked by atropine, but not by inhibitors of the nicotinic acetylcholine receptor or L-, N-, or T-type voltage-regulated Ca2+ channels. By contrast, depletion of intracellular Ca2+ stores with thapsigargin only weakly stimulates Ba2+ influx. Unlike store-operated Ca2+ channels (SOCCs), which close only after intracellular Ca2+ stores refill, channels mediating carbachol-stimulated Ba2+ influx rapidly close following the inactivation of mAChRs with atropine. Ba2+ influx is inhibited by extracellular Ca2+, by the Ca2+ channel blocker SKF-96365, and by activation of protein kinase C (PKC). Exogenous expression of antisense RNA encoding the rat canonical-transient receptor potential Ca2+ channel subtype 6 (TRPC6) or the N-terminal domain of TRPC6 blocks carbachol-stimulated Ba2+ influx in PC12D cells. Expression of TRPC6 antisense RNA or the TRPC6 N-terminal domain also blocks Ba2+ influx stimulated by 1-oleoyl-2-acetyl-sn-glycerol (OAG), a diacylglycerol analog previously shown to activate exogenously expressed TRPC6 channels. These data show that mAChRs in PC12D cells activate endogenous Ca2+ channels that are regulated independently of Ca2+ stores and require the expression of TRPC6.  相似文献   

5.
Abstract: The catecholamine secretory function of a preparation of isolated bovine adrenal chromaffin cells has been further characterized under conditions designed to elucidate the mechanism of calcium channel activation and the possible role of cytoskeletal elements in stimulus-secretion coupling. Three related sets of data were obtained: (1) Differences in kinetics, Ca dependence, strength, and additivity of the secretory response to acetylcholine (ACh) versus excess K; (2) the effects on secretion of the Ca channel-blocking agents, Ni, Mg, and verapamil; and (3) the Ca dependence of vinblastine action on ACh- and K-evoked secretion. The results suggest that a major portion of the Ca influx required for catecholamine release enters the cell via voltage-dependent Ca channels with some additional Ca influx via the ACh receptor channel. Comparison of the present secretion data with corresponding known electrophysiological properties of isolated chromaffin cells provides added evidence for a role of chromaffin cell action potentials in regulation of Ca influx and the secretory response. Elevated Ca concentrations enhanced K-evoked secretion to levels comparable to that of ACh but did not induce a vinblastine block of K-evoked release. This provides further evidence against a role of microtubules in the common exocytosis event per se. However, a role of cytoskeletal elements in directing the movement of secretory granules, or an action of vinblastine at cholinergic receptors, remain distinct possibilities.  相似文献   

6.
The catecholamine secretory function of a preparation of isolated bovine adrenal chromaffin cells has been further characterized under conditions designed to elucidate the mechanism of calcium channel activation and the possible role of cytoskeletal elements in stimulus-secretion coupling. Three related sets of data were obtained: (1) Differences in kinetics, Ca dependence, strength, and additivity of the secretory response to acetylcholine (ACh) versus excess K; (2) the effects on secretion of the Ca channel-blocking agents, Ni, Mg, and verapamil; and (3) the Ca dependence of vinblastine action on ACh- and K-evoked secretion. The results suggest that a major portion of the Ca influx required for catecholamine release enters the cell via voltage-dependent Ca channels with some additional Ca influx via the ACh receptor channel. Comparison of the present secretion data with corresponding known electrophysiological properties of isolated chromaffin cells provides added evidence for a role of chromaffin cell action potentials in regulation of Ca influx and the secretory response. Elevated Ca concentrations enhanced K-evoked secretion to levels comparable to that of Ach but did not induce a vinblastine block of K-evoked release. This provides further evidence against a role of microtubules in the common exocytosis event per se. However, a role of cytoskeletal elements in directing the movement of secretory granules, or an action of vinblastine at cholinergic receptors, remain distinct possibilities.  相似文献   

7.
In adrenal zona glomerulosa cells, calcium entry is crucial for aldosterone production and secretion. This influx is stimulated by increases of extracellular potassium in the physiological range of concentrations and by angiotensin II (Ang II). The high threshold voltage-activated (L-type) calcium channels have been shown to be the major mediators for the rise in cytosolic free calcium concentration, [Ca2+]c, observed in response to a depolarisation by physiological potassium concentrations. Paradoxically, both T- and L-type calcium channels have been shown to be negatively modulated by Ang II after activation by a sustained depolarisation. While the modulation of T-type channels involves protein kinase C (PKC) activation, L-type channel inhibition requires a pertussis toxin-sensitive G protein. In order to investigate the possibility of additional modulatory mechanisms elicited by Ang II on L-type channels, we have studied the effect of PKC activation or tyrosine kinase inhibition. Neither genistein or MDHC, two strong inhibitors of tyrosine kinases, nor the phorbol ester PMA, a specific activator of PKC, affected the Ang II effect on the [Ca2+]c response and on the Ba2+ currents elicited by cell depolarisation with the patch-clamp method. We propose a model describing the mechanisms of the [Ca2+]c modulation by Ang II and potassium in bovine adrenal glomerulosa cells.  相似文献   

8.
Effects of the inorganic calcium channel blockers zinc, manganese, cadmium, and nickel on secretion of catecholamines from the perfused adrenal gland of the rat were investigated. Secretion of catecholamines evoked by splanchnic nerve stimulation (1 and 10 Hz) was not affected by nickel (100 microM), partially blocked (50%) by cadmium (100 microM), and almost completely blocked (90%) by zinc (1 mM) or manganese (2 mM). A combination of nickel and cadmium inhibited nerve stimulation-evoked secretion by 80-90%. Catecholamine secretion evoked by direct stimulation of chromaffin cells by acetylcholine (50 micrograms), nicotine (5 microM), muscarine (50 micrograms), and K+ (17.5 mM) was not blocked by either cadmium, nickel, or their combination. However, zinc and manganese almost abolished nicotine- and K(+)-evoked secretion of catecholamines. None of the above agents had any effect on the secretion evoked by muscarine. Acetylcholine-evoked secretion of catecholamines was only partially reduced (50%) by zinc and manganese. We draw the following conclusions from the above findings: (a) cadmium plus nickel selectively blocks the calcium channels of splanchnic neurons but has no effect on calcium channels of the chromaffin cells; (b) zinc and manganese do not discriminate between calcium channels of neurons and calcium channels of chromaffin cells; (c) partial inhibition of acetylcholine-evoked secretion by inorganic calcium channel blockers is consistent with the idea that activation of nicotinic receptors increases Ca2+ influx, and activation of muscarinic receptors mobilizes intracellularly bound Ca2+, which is not affected by calcium channel blockers.  相似文献   

9.
Calcium signaling mechanisms in the gastric parietal cell.   总被引:1,自引:0,他引:1  
Gastric hydrochloric acid (HCl) secretion is stimulated in vivo by histamine, acetylcholine, and gastrin. In vitro studies have shown that histamine acts mainly via a cAMP-dependent pathway, and acetylcholine acts via a calcium-dependent pathway. Histamine also elevates intracellular calcium ([Ca2+]i) in parietal cells. Both gastrin and acetylcholine release histamine from histamine-containing cells. In humans, rats, and rabbits, there is considerable controversy as to whether or not gastrin receptors are also present on the parietal cell. We utilized digitized video image analysis techniques in this study to demonstrate gastrin-induced changes in intracellular calcium in single parietal cells from rabbit in primary culture. Gastrin also stimulated a small increase in [14C]-aminopyrine (AP) accumulation, an index of acid secretory responsiveness in cultured parietal cells. In contrast to histamine and the cholinergic agonist, carbachol, stimulation of parietal cells with gastrin led to rapid loss of the calcium signaling response, an event that is presumed to be closely related to gastrin receptor activation. Moreover, different calcium signaling patterns were observed for histamine, carbachol, and gastrin, Previous observations coupled with present studies using manganese, caffeine, and ryanodine suggest that agonist-stimulated increases in calcium influx into parietal cells do not occur via voltage-sensitive calcium channels or nonspecific divalent cation channels. It also appears to be unlikely that release of intracellular calcium is mediated by a muscle or neuronal-type ryanodine receptor. We hypothesize that calcium influx may be mediated by either a calcium exchange mechanism or by an unidentified calcium channel subtype that possesses different molecular characteristics as compared to muscle, nerve, and certain secretory cell types such as, for example, the adrenal chromaffin cell. Release of intracellular calcium may be mediated via both InsP3-sensitive and -insensitive mechanisms. The InsP3-insensitive calcium pools, if present, do not appear, however, to possess ryanodine receptors capable of modulating calcium efflux from these storage sites.  相似文献   

10.
The effects of temperature on ion fluxes and catecholamine secretion that are mediated by nicotinic acetylcholine receptors (nAChRs), voltage-sensitive calcium channels (VSCCs), and voltage-sensitive sodium channels (VSSCs) were investigated using bovine adrenal chromaffin cells. When the chromaffin cells were stimulated with DMPP, a nicotinic cholinergic agonist, or 50 mM K+, the intracellular calcium ([Ca2+]i) elevation reached a peak and decreased more slowly at lower temperatures. The DMPP-induced responses were more sensitive to temperature changes compared to high K+-induced ones. In the measurement of intracellular sodium concentrations ([Na+]i), it was found that nicotinic stimulation required a longer time to attain the maximal level of [Na+]i at lower temperatures. In addition, the VSSCs-mediated [Na+]i increase evoked by veratridine was also reduced as the temperature decreased. The measurement of [3H]norepinephrine (NE) secretion showed that the secretion within the first 3 min evoked by DMPP or high K+ was greatest at 37 degrees C. However, at 25 degrees C, the secretion evoked by DMPP, but not that by the 50 mM K+, was greater after 10 min of stimulation. This data suggest that temperature differentially affects the activity of nAChRs, VSCCs, and VSSCs, resulting in differential [Na+]i and [Ca2+]i elevation, and in the [3H]NE secretion by adrenal chromaffin cells.  相似文献   

11.
The calcium-entry antagonist D600 (methoxyverapamil) inhibited nicotine- and veratridine-induced 45Ca2+ uptake, 22Na+ uptake, and catecholamine secretion in primary cultures of bovine adrenal medulla cells. Inhibition of nicotine-induced effects occurred at D600 concentrations approximately 3-10-fold lower than those needed to produce similar inhibition of veratridine-induced effects. Inhibition of the veratridine-induced effects was competitive, but inhibition of the nicotine-induced effects was not competitive. These results suggest that D600, in addition to blocking "slow" Ca2+ channels and tetrodotoxin-sensitive Na+ channels also blocks nicotine transmission, possibly either by noncompetitively inhibiting the interaction of nicotine with the receptor binding site or by blockade of the receptor-associated ion conductance channel.  相似文献   

12.
In the bovine adrenal glomerulosa cell, calcium influx through voltage-dependent calcium channels is critical to maintaining an aldosterone secretory response. In patch clamp, atrial natriuretic peptide (ANP) inhibits T-type calcium channel current yet stimulates L-type calcium channel current. In the present study the channel effects of ANP observed in the patch-clamp configuration were extended and related to populations of cells. We observed the following. (i) The effect of ANP on T-channel current resulted in the reduction in the open state probability. ANP decreased the mean open state duration from 14.2 to 1.8 ms/sweep. (ii) In the weakly depolarized cell stimulated by 8 mM K+, ANP reduced the level of aequorin luminescence (a measure of cytosolic calcium) and completely inhibited the stimulated rate of aldosterone secretion, returning it to prestimulation values. These effects are consistent with a decrease in net calcium channel influx and the reported inhibition of T-channel current. In contrast, the calcium channel blocker, nitrendipine, which at low dose selectively blocks L-type calcium channel flux, only slightly reduced luminescence, and partially inhibited the sustained secretory response. (iii) In the strongly depolarized cell, stimulated by 60 mM K+, ANP increased the level of aequorin luminescence consistent with an increase in net calcium channel influx and the reported stimulation of L-channel current. These results indicate that under physiological conditions the inhibition of T-type calcium channels may be involved in the inhibition of the aldosterone secretion induced by ANP.  相似文献   

13.
We reported earlier that adenine nucleotides and adenosine inhibit acetylcholine-induced catecholamine secretion from bovine adrenal medulla chromaffin cells. In this article, we used an adenosine analogue, N6-L-phenylisopropyladenosine (PIA), to study the mechanism underlying inhibition of catecholamine secretion by adenosine. PIA inhibits secretion induced by a nicotinic agonist, 1,1-dimethyl-4-phenylpiperazinium, or by elevated external K+. The half-maximal effect on 1,1-dimethyl-4-phenylpiperazinium-induced secretion occurred at approximately 5 x 10(-5) M. The inhibition is immediate and reversible. Fura-2 measurements of cytosolic free Ca2+ indicate that PIA inhibits Ca2+ elevation caused by stimulation; measurements of 45Ca2+ influx show that PIA inhibits uptake of Ca2+. PIA does not inhibit calcium-evoked secretion from digitonin-permeabilized cells, nor does PIA cause any significant change in the dependence of catecholamine secretion on calcium concentration. These data suggest that inhibition by PIA occurs at the level of the voltage-sensitive calcium channel.  相似文献   

14.
T淋巴细胞上的离子通道   总被引:4,自引:0,他引:4  
Xiao L  Fu HY  Song DM  Fan SG 《生理科学进展》2003,34(2):105-110
近年的研究证明,淋巴细胞上的离子通道,在免疫功能调节中具有重要的作用。T淋巴细胞上主要有三类离子通道,即Ca2 、K 和C1-通道。Ca2 通过T淋巴细胞膜上的Ca2 通道(CRAC)进入细胞内,可作为第二信使激活T淋巴细胞。通过K 通道的K 外流是T淋巴细胞膜电位形成的基础。由于膜电位水平可以影响钙离子的内流,因此,K 通道可以间接调节T淋巴细胞的活化和功能。T淋巴细胞上的Cl-通道是新近发现的一种离子通道,可能与细胞的体积调节有关。本文扼要总结了T淋巴细胞上离子通道的新近进展。  相似文献   

15.
In smooth muscle cells, the electrophysiological properties of potential-dependent calcium channels are similar to those described in other excitable cells. The calcium current is dependent on the extracellular calcium concentration; it is insensitive to external sodium removal and tetrodotoxin application. Other ions (Ba2+, Sr2+, Na+) can flow through the calcium channel. This channel is blocked by Mn2+, Co2+, Cd2+ and by organic inhibitors. The inactivation mechanism is mediated by both the membrane potential and the calcium influx. Ca2+ ions can also penetrate into the cell through receptor-operated channels. These channels show a low ionic selectivity and are generally less sensitive to organic Ca-blockers than the potential-dependent calcium channels. The finding of specific channel inhibitors as well as the study of the biochemical pathways between receptor activation and channel opening are prerequisites to further characterization of receptor-operated channels.  相似文献   

16.
P S Liu  L S Kao 《Cell calcium》1990,11(9):573-579
Bovine adrenal chromaffin cells were loaded with Na+ via either acetylcholine receptor-associated ion channels or voltage-sensitive Na+ channels. There were increases in [Ca2+]i, 45Ca2+ uptake and catecholamine secretion in both types of Na(+)-loaded cells relative to control cells in which Na+ loading had been prevented by hexamethonium and tetrodotoxin, respectively. These results show the presence of Na(+)-dependent Ca2+ influx activity in chromaffin cells which is probably mediated by the reverse mode of a Na+/Ca2+ exchanger.  相似文献   

17.
Bovine adrenal glomerulosa (AZG) cells were shown to express bTREK-1 background K(+) channels that set the resting membrane potential and couple angiotensin II (ANG II) receptor activation to membrane depolarization and aldosterone secretion. Northern blot and in situ hybridization studies demonstrated that bTREK-1 mRNA is uniformly distributed in the bovine adrenal cortex, including zona fasciculata and zona glomerulosa, but is absent from the medulla. TASK-3 mRNA, which codes for the predominant background K(+) channel in rat AZG cells, is undetectable in the bovine adrenal cortex. In whole cell voltage clamp recordings, bovine AZG cells express a rapidly inactivating voltage-gated K(+) current and a noninactivating background K(+) current with properties that collectively identify it as bTREK-1. The outwardly rectifying K(+) current was activated by intracellular acidification, ATP, and superfusion of bTREK-1 openers, including arachidonic acid (AA) and cinnamyl 1-3,4-dihydroxy-alpha-cyanocinnamate (CDC). Bovine chromaffin cells did not express this current. In voltage and current clamp recordings, ANG II (10 nM) selectively inhibited the noninactivating K(+) current by 82.1 +/- 6.1% and depolarized AZG cells by 31.6 +/- 2.3 mV. CDC and AA overwhelmed ANG II-mediated inhibition of bTREK-1 and restored the resting membrane potential to its control value even in the continued presence of ANG II. Vasopressin (50 nM), which also physiologically stimulates aldosterone secretion, inhibited the background K(+) current by 73.8 +/- 9.4%. In contrast to its potent inhibition of bTREK-1, ANG II failed to alter the T-type Ca(2+) current measured over a wide range of test potentials by using pipette solutions of identical nucleotide and Ca(2+)-buffering compositions. ANG II also failed to alter the voltage dependence of T channel activation under these same conditions. Overall, these results identify bTREK-1 K(+) channels as a pivotal control point where ANG II receptor activation is transduced to depolarization-dependent Ca(2+) entry and aldosterone secretion.  相似文献   

18.
Lead buffers (citrate and Tiron) were used to investigate the effects of low concentrations (0.1-6 microM) of Pb2+ on stimulus-secretion coupling in isolated bovine chromaffin cells. Nicotinic agonists and high K elicit secretion by enhancing Ca2+ influx into chromaffin cells. Pb2+ inhibited the catecholamine secretion in response to 500 microM carbachol and 77 mM K+ depolarization but was without significant effect on basal secretion. Pb2+ also inhibited the influx of 45Ca occurring in response to these agents. The K0.5 values for inhibition suggest that the carbachol-evoked flux is more sensitive to Pb2+ than influx in response to a direct depolarization. When extracellular calcium was lowered in the absence of Pb2+, both secretion and 45Ca entry were reduced. The effects of Pb2+ were comparable to those of lowered Ca2+. 22Na influx through nicotinic receptor-mediated channels, measured in the presence of tetrodotoxin (2 microM) and ouabain (50 microM), was inhibited by Pb2+. The results suggest that Pb2+ inhibits exocytotic catecholamine secretion by inhibiting Ca2+ influx. The differential sensitivity to Pb2+ of K- and carbachol-evoked 45Ca flux, coupled with the 22Na measurements, indicates that Pb2+ inhibits the movement of ions through acetylcholine-induced channels as well as through voltage-sensitive calcium channels.  相似文献   

19.
The calcium content of bovine adrenal medulla perfused in vitro has been shown to increase about 30% in response to extensive acetylcholine stimulation. The calcium accumulated during secretion was mainly associated with the mitochondria and chromaffin granule fractions and to a lesser extent in the microsome fraction. While the calcium taken up by the mitochondria and microsomes was partly or totally removed by treatment with EDTA, the chelating agent had no effect on the granule content of calcium. The uptake of calcium in the mitochondria and microsomes during secretion is consistent with a function of these organelles in regulating the cellular calcium concentration. It is suggested that also the chromaffin granules may act as a “Ca-pump” in the chromaffin cell of the adrenal medulla.  相似文献   

20.
Numerous biological assays and pharmacological studies on various higher plant tissues have led to the suggestion that voltage-dependent plasma membrane Ca2+ channels play prominent roles in initiating signal transduction processes during plant growth and development. However, to date no direct evidence has been obtained for the existence of such depolarization-activated Ca2+ channels in the plasma membrane of higher plant cells. Carrot suspension cells (Daucus carota L.) provide a well-suited system to determine whether voltage-dependent Ca2+ channels are present in the plasma membrane of higher plants and to characterize the properties of putative Ca2+ channels. It is known that both depolarization, caused by raising extracellular K+, and exposure to fungal toxins or oligogalacturonides induce Ca2+ influx into carrot cells. By direct application of patch-clamp techniques to isolated carrot protoplasts, we show here that depolarization of the plasma membrane positive to -135 mV activates Ca(2+)-permeable channels. These voltage-dependent ion channels were more permeable to Ca2+ than K+, while displaying large permeabilities to Ba2+ and Mg2+ ions. Ca(2+)-permeable channels showed slow and reversible inactivation. The single-channel conductance was 13 pS in 40 mM CaCl2. These data provide direct evidence for the existence of voltage-dependent Ca2+ channels in the plasma membrane of a higher plant cell and point to physiological mechanisms for plant Ca2+ channel regulation. The depolarization-activated Ca(2+)-permeable channels identified here could constitute a regulated pathway for Ca2+ influx in response to physiologically occurring stimulus-induced depolarizations in higher plant cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号