首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have established and characterized an immortalized xeroderma pigmentosum (XP), group C, cell line. Transformation of the human fibroblasts was carried out with a recombinant plasmid, pLAS-wt, containing SV40 DNA encompassing the entire early region with a defective origin of DNA replication. The transformed XP cell line, XP4PA-SVwt, and the normal transformed fibroblasts AS3-SVwt, both express SV40 T antigen together with enhanced levels of the transformation-associated cellular protein, p53. XP4PA-SVwt retains the XP UV-repair defective phenotype as demonstrated by low levels of unscheduled DNA synthesis and by the reduced survival of irradiated SV40 virus. Analysis of cellular DNA shows a single major, stable, integration site of pLAS-wt in the XP4PA-SVwt cells. The T antigen in these cells supports efficiently the replication of SV40 based shuttle vectors and should prove suitable for the introduction, expression and selection of genes related to DNA repair and to the study of mutagenesis using defined molecular probes.  相似文献   

2.
M Jost  C Kari    U Rodeck 《Nucleic acids research》1997,25(15):3131-3134
The recently introduced tetracycline (Tc)-regulatable eukaryotic gene expression system based on the Escherichia coli Tn 10 tetracycline operon has proven to be a powerful tool for controlled expression of a variety of genes in vitro as well as in vivo . Control elements of this expression system are contained in two separate plasmid vectors. The tTA vector encodes a transactivator protein and the tetP vector contains a responsive operator-promoter element (tetP) that controls gene expression depending on tTA binding. Establishment of cell lines expressing a gene of interest under tetP control requires two subsequent rounds of transfection and clonal selection after each transfection. Here we describe a modification of this system in which the tetP element is placed in an episomal EBNA-based plasmid that can be stably maintained in primate but not in rodent cells. Using HeLa and human melanoma cells, we show that upon transient or stable transfection a reporter gene is expressed in a Tc-regulated manner similar to the original system. Thus, this expression system combines the advantages of episomal vectors, such as high efficiency of transfection and time-efficient selection of mass cultures, with tight control of gene expression provided by the Tc-regulatable system.  相似文献   

3.
4.
5.
Currently available vectors for mammalian cells suffer from a number of limitations which make them only partially useful for genetic modification of eukaryotic cells and organisms and for gene therapy. While integration of a vector can lead to unpredictable interactions with the host genome and silencing of the integrated transgene, most non-integrating vectors mediate only transient expression of a transgene. All available vector types can lead to transformation of the recipient cell and many of them can cause serious immunological side effects in the organism. The ideal vector has to be free of these side effects and should allow long-term expression of a transgene in the absence of selection. In this report we describe a novel non-viral episomal expression system fulfilling these criteria. The gene encoding the truncated rat NGF-receptor gene under the control of the CMV-promoter was inserted into a vector construct containing a scaffold/matrix attached region (S/MAR). This vector was then transfected into CHO cells and human HaCat cells. We show that this vector replicates episomally in these cells and is mitotically stable in the abscence of selection over more than 100 generations. Moreover, we provide the first experimental data that the CMV-promoter in an episome is not subject to silencing by cytosine methylation, thus allowing long-term expression of the transgene in the absence of selection.  相似文献   

6.
《Gene》1998,211(2):229-234
Shuttle vectors are useful tools for studying DNA replication and mutagenesis. SV40-based shuttle vectors are popular because of their ease of use and quick results. However, one complication with the use of SV40-based shuttle vectors is the interaction of cellular p53 protein with the T-antigen of SV40. Wild-type, but not mutant, p53 has been shown to be involved in DNA replication and DNA repair. To address this concern, we have modified an SV40-based shuttle vector, pZ189, by exchanging the wt T-antigen for a mutant SV40 T-antigen, which is unable to bind with p53. This shuttle vector, pZ402, provides us with a tool to study DNA replication and genomic instability in cells with varying genetic backgrounds without interference from the interaction of T-antigen with p53.  相似文献   

7.
Adeno-associated viral (AAV) vectors have demonstrated great utility for long-term gene expression in muscle tissue. However, the mechanisms by which recombinant AAV (rAAV) genomes persist in muscle tissue remain unclear. Using a recombinant shuttle vector, we have demonstrated that circularized rAAV intermediates impart episomal persistence to rAAV genomes in muscle tissue. The majority of circular intermediates had a consistent head-to-tail configuration consisting of monomer genomes which slowly converted to large multimers of >12 kbp by 80 days postinfection. Importantly, long-term transgene expression was associated with prolonged (80-day) episomal persistence of these circular intermediates. Structural features of these circular intermediates responsible for increased persistence included a DNA element encompassing two viral inverted terminal repeats (ITRs) in a head-to-tail orientation, which confers a 10-fold increase in the stability of DNA following incorporation into plasmid-based vectors and transfection into HeLa cells. These studies suggest that certain structural characteristics of AAV circular intermediates may explain long-term episomal persistence with this vector. Such information may also aid in the development of nonviral gene delivery systems with increased efficiency.  相似文献   

8.
The p53 tumor suppressor gene has been shown to be involved in a variety of repair processes, and recent findings have suggested that p53 may be involved in DNA double strand break repair in irradiated cells. The role of p53 in DNA double strand break repair, however, has not been fully investigated. In this study, we have constructed a novel Epstein-Barr virus (EBV)-based shuttle vector, designated as pZEBNA, to explore the influence of p53 on DNA strand break repair in human lymphoblasts, since EBV-based vectors do not inactivate the p53 pathway. We have compared plasmid survival of irradiated, restriction enzyme linearized, and calf intestinal alkaline phosphatase (CIP)-treated pZEBNA with a Simian virus 40 (SV40)-based shuttle vector, pZ189, in TK6 (wild-type p53) and WTK1 (mutant p53) lymphoblasts and determined that p53 does not modulate DNA double strand break repair in these cell lines.  相似文献   

9.
We have constructed an episomal shuttle vector which can transfer large (>100 kb) human genomic DNA inserts back and forth between bacteria and human cells and which can be tracked in rapidly dividing human cells using a live cell assay. The vector (p5170) is based on the F factor-derived bacterial artificial chromosome cloning vector used in Escherichia coli, with the addition of the family of repeats element from the Epstein-Barr virus (EBV) latent origin of replication. This element provides nuclear retention in cells expressing the EBV protein EBNA-1. We have subcloned a series of genomic DNA inserts into p5170 and transfected the constructs into an EBNA-1(+) human cell line. Episomal mitotic stability was quantitatively analysed using flow cytometry. The episomes were also tracked by time course photography of expanding colonies. A 117 kb episome was retained at approximately 2 copies/cell and could be shuttled unrearranged from the human cells into bacterial cells after 15 months of continuous cell growth. Furthermore, the episome could still be rescued from human cells cultured in the absence of selection for 198 days. Such a trackable E.coli /human cell line shuttle vector system capable of carrying >100 kb of genomic DNA in human cells could prove a valuable tool in gene expression studies.  相似文献   

10.
The stability of an Epstein-Barr virus (EBV)-simian virus 40 (SV40) hybrid shuttle vector, the p205-GTI plasmid, was analyzed in human cells during EBV- or SV40-type replication mode. When the p205-GTI plasmid was maintained as an episomal EBV vector in the human 293 cell line, no rearrangement was detected. To induce the SV40 replication mode, cells containing the episomal p205-GTI plasmid were either transfected with vectors carrying the T antigen gene or infected with SV40. Surprisingly, we observed both production and amplification of different classes of recombinant molecules. Particular types of modifications were found in most of the recombinants. The most striking rearrangement was a duplication of the promoter and enhancer regions of SV40 which was inserted in the thymidine kinase (TK) promoter. This recombination process involved a few bases of homology, and one of the recombination junctions implicated the GC boxes which constitute the essential components of the TK and SV40 early promoters. Our results suggest that a combination of a low level of base homology and a specific DNA sequence function (promoter and enhancer sites) leads to a very high level of recombinational activity during T-antigen-dependent plasmid replication.  相似文献   

11.
Recombinant adenoviruses are widely used in basic virology research, therapeutic applications, vaccination studies or simply as a tool for genetic manipulation of eukaryotic cells. Dependent on the application, transient or stable maintenance of the adenoviral genome and transgene expression are required. The newest generation of recombinant adenoviral vectors is represented by high-capacity adenoviral vectors (HC-AdVs) which lack all viral coding sequences. HC-AdVs were shown to result in long-term persistence of transgene expression and phenotypic correction in small and large animal models with negligible toxicity.Although there is evidence that adenoviral vectors predominantly persist as episomal DNA molecules with a low integration frequency into the host genome, detailed information about the nuclear fate and the molecular status of the HC-AdV genome once inside the nucleus is lacking. In recent years we have focused on analyzing and modifying the nuclear fate of HC-AdVs after infection of mammalian cells. We have focused on investigating the molecular DNA forms of HC-AdV genomes and we have designed strategies to excise and stably integrate a transgene from an episomal adenovirus vector genome into the host chromosomes by recombinases. This review article provides a state-of-the art overview of the current knowledge of episomal HC-AdV persistence and it discusses strategies for changing the nuclear fate of a transgene inserted into the HC-AdV genome by somatic integration into host chromosomes.  相似文献   

12.
A Stary  A Sarasin 《Biochimie》1991,73(4):509-514
In order to approach the mechanism of gene amplification, we have developed a model system in human cells based on the use of episomally-replicating shuttle vectors. Shuttle vectors carrying the replication origin of the Epstein-Barr virus can be stably maintained in human cells. These vectors replicate as an episome with a low copy number. We also constructed hybrid plasmids containing both the EBV and the SV40 replication origins. These molecules are able to replicate episomally either like an EBV vector or like SV40 if the SV40 large T antigen is provided at the same time. UV irradiation of both human adenovirus transformed 293 or SV40-transformed MRC5 host cells leads to vector amplification whatever the type of replication origin used for the episomal maintenance. Our result clearly shows that the EBV latent replication origin (OriP), in the presence of the Epstein-Barr nuclear antigen-1 (EBNA-1) and the SV40 large T antigen, is sensitive to over-replication in UV-irradiated human cells. Since the UV doses were small enough to induce very little damage, if any, on the plasmid sequences, this amplification should be mediated through a cellular factor acting in trans. The interest in using shuttle vectors for this kind of study lays in the easy analysis of the amplified vectors in rescued bacterial colonies. The accuracy of the amplification process can be monitored by studying restriction maps of individual plasmid molecules or more precisely the integrity of a target gene, such as the lacZ' sequence, carried by our vectors.  相似文献   

13.
Using cloned Epstein-Barr nuclear antigen 1 (EBNA) and oriP elements from the Epstein-Barr virus (EBV) in conjunction with liver-specific growth media, we have constructed an EBNA-producing line of well-differentiated human hepatoma cells (Hep-EBNA-2) and appropriate EBV-oriP vectors. These vectors, pBEDC1 and pBEUG1, were maintained as free extrachromosomal elements only in cells that expressed the trans-acting EBNA protein. They were readily rescued from transfected Hep-EBNA-2 cells upon transformation of recA- Escherichia coli with cellular low-Mr DNA. They are true shuttle vectors in that they can propagate as free closed circular elements in both human Hep-EBNA-2 cells and E. coli. Finally, we have demonstrated the vector capability of our shuttle system by inserting into the SV40 expression cassette of pBEUG1 a large full-length cDNA encoding coagulation factor VIII. Our data clearly show that EBV-oriP episomes are able to stably propagate in an hepatic background and that neither high levels of EBNA protein nor multiple copy episomes significantly interfere with the expression of the set of hepatic functions that have been analyzed. These results are discussed in terms of gene amplification and cloning of genes that program liver differentiation.  相似文献   

14.
The most promising new techniques for the study of in vivo mammalian mutagenesis make use of transgenic mice carrying a recoverable vector. Mutation systems in mammals can be based on the selection of altered phenotypes among cells sampled from the whole animal, but they are then limited to the very few cell types in which the marker gene is expressed. Such systems require both in vivo and in vitro cell proliferation for expression and verification of the mutations. To avoid these complications, the study of mutations in most tissues must be based on the detection of genetic alterations in a vector that is independent of the phenotype of the mammalian cell. The vector is only a small portion of the mammalian genome, and many of the procedures for recovering the vector are inhibited by the host DNA. For this reason, partial purification is necessary. The purification is made possible by using vectors which are not cut by restriction enzymes that cut the host DNA to pieces of an average size considerably smaller than the vector. The efficiency for measuring mutation frequencies depends on the number of vectors which can be recovered from a certain amount of DNA and is affected by the number of vectors per mammalian genome and the transfection efficiency of the partially-purified vector. In order to avoid selection against or for the spontaneous or induced mutations, the transfection efficiency of the vector from the transformed DNA and of the pure vector DNA should be of the same order of magnitude. Differences in the response to mutagens between the mammalian genome and the procaryotic vector may be expected due to the lack of unique mammalian topographical features in the vectors. Any mutation induction which depends preferentially on these unique features of the mammalian genome may not be detected in a shuttle vector system unless the vector has been engineered or specifically designed to include such topographical characters. The shortcoming of short-term tests that use mutagenicity for predicting human carcinogenicity is usually lack of correlation between mutagenesis in the short-term tests and the corresponding results in carcinogenesis bioassays in mammals. One factor which could contribute to the lack of correlation between the short-term test systems and the bioassays is that we are comparing mutations in totally different genes in different organisms. By using the phi X174 shuttle system, one of the variables may be eliminated.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

15.
Gene delivery by lentivirus vectors   总被引:13,自引:0,他引:13  
The capacity to efficiently transduce nondividing cells, shuttle large genetic payloads, and maintain stable long-term transgene expression are attributes that have brought lentiviral vectors to the forefront of gene delivery vehicles for research and therapeutic applications in a clinical setting. Our discussion initiates with advances in lentiviral vector development and how these sophisticated lentiviral vectors reflect improvements in safety, regarding the prevention of replication competent lentiviruses (RCLs), vector mobilization, and insertional mutagenesis. Additionally, we describe conventional molecular regulatory systems to manage gene expression levels in a spatial and temporal fashion in the context of a lentiviral vector. State of the art technology for lentiviral vector production by transient transfection and packaging cell lines are explicitly presented with current practices used for concentration, purification, titering, and determining the safety of a vector stock. We summarize lentiviral vector applications that have received a great deal of attention in recent years including the generation of transgenic animals and the stable delivery of RNA interference molecules. Concluding remarks address some of the successes in preclinical animals, and the recent transition of lentiviral vectors to human clinical trials as therapy for a variety of infectious and genetic diseases.  相似文献   

16.
We have created a cell line that can repair damage in chromosomal DNA and in herpes virus, while not repairing the same damage in shuttle vectors (pZ189 and pRSVcat). This cell line, a xeroderma pigmentosum (XP) revertant, repairs the minor (6-4)-photoproducts, but not cyclobutane dimers, in chromosomal DNA. The phenotype of this revertant after irradiation with ultraviolet (UV) light is the same as that of normal cells for survival, repair replication, recovery of rates of DNA and RNA synthesis, and sister-chromatid exchange formation, which indicates that a failure to mend cyclobutane dimers may be irrelevant to the fate of irradiated human cells. The two shuttle vectors were grown in Escherichia coli and assayed during transient passage in human cells, whereas the herpes virus was grown and assayed exclusively in mammalian cells. The ability of the XP revertant to distinguish between the shuttle vector and herpes virus DNA molecules according to their 'cultural background', i.e., bacterial or mammalian, may indicate that one component of the repair of UV damage involves gene products that recognize DNA markers that are uniquely mammalian, such as DNA methylation patterns. This component of excision repair may be involved in the original defect and the reversion of XP group A cells.  相似文献   

17.
Safe and efficient gene transfer systems are the basis of gene therapy applications. Non-integrating lentiviral (NIL) vectors are among the most promising candidates for gene transfer tools, because they exhibit high transfer efficiency in both dividing and non-dividing cells and do not present a risk of insertional mutagenesis. However, non-integrating lentiviral vectors cannot introduce stable exogenous gene expression to dividing cells, thereby limiting their application. Here, we report the design of a non-integrating lentiviral vector that contains the minimal scaffold/matrix attachment region (S/MAR) sequence (SNIL), and this SNIL vector is able to retain episomal transgene expression in dividing cells. Using SNIL vectors, we detected the expression of the eGFP gene for 61 days in SNIL-transduced stable CHO cells, either with selection or not. In the NIL group without the S/MAR sequence, however, the transduced cells died under selection for the transient expression of NIL vectors. Furthermore, Southern blot assays demonstrated that the SNIL vectors were retained extrachromosomally in the CHO cells. In conclusion, the minimal S/MAR sequence retained the non-integrating lentiviral vectors in dividing cells, which indicates that SNIL vectors have the potential for use as a gene transfer tool.  相似文献   

18.
The human immunodeficiency virus type 1 (HIV-1) Vpr protein induces cell cycle arrest at the border of G(2) and M similar to the arrest caused by agents which damage DNA. We determined whether the presence of Vpr would affect the ability of cells to repair DNA. We developed a shuttle vector system to analyze the effect of Vpr upon the repair of UV-damaged DNA. Our results demonstrated that the presence of Vpr decreased the rate of deletions in this system. Of note, cells arrested in G(2) by other genotoxic agents also increased the frequency of DNA repair of UV-damaged shuttle vectors. We did not observe any direct effect of Vpr upon the rate of double-strand break repair and/or nucleotide excision repair of genomic DNA in cells. Our results suggest a role for HIV-1 Vpr in altering the frequency of DNA repair, a property which may have importance for HIV-1 replication and pathogenesis.  相似文献   

19.
In order to analyze the mechanisms of mutagenesis in human cells, we have established a human 293 cell-derived line containing a permanent mutagenesis target, the bacterial lacZ' gene, on an episomal EBV/SV40-based shuttle vector. This plasmid was maintained at a low copy number per cell which rendered it closer to an endogenous gene as compared to the usual transient shuttle vectors. Transient amplification of vectors, inside the host cell due to expression of the SV40 T-antigen, allowed the recovery of a large number of bacterial colonies transformed by plasmids extracted from human cells. Mutations produced in human host cells on the lacZ' locus were easily and rapidly scored and identified in bacteria using the blue/white color assay. Over a 6-month period in culture, we have shown that the lacZ' gene exhibited a low background frequency of point mutations (< 4.8 x 10(-6)). The efficiency of our system for detecting genotoxic-induced mutations was investigated by treating cells with a potent mutagen, the direct alkylating agent N-methyl-N'-nitro-N-nitrosoguanidine (MNNG). A significant increase (< 230-fold) in the frequency of single-base substitutions was observed after MNNG treatment. In total, 63 MNNG-induced independent mutations were characterized. All substitutions but one involved G:C base pairs with 89% being G:C to A:T transitions which is consistent with the MNNG mutagenic specificity already reported in bacteria and mammalian cells. Mutations were distributed along the two strands of the lacZ' gene and there was no obvious influence of either the 5' or the 3' flanking base near the G:C to A:T transition sites. The low spontaneous point mutation frequency on the mutagenesis locus and the ability to detect induced point mutations indicate that this system could be readily used in human mutagenesis studies at the molecular level.  相似文献   

20.
A composite mammalian cell-E. coli shuttle vector was developed based on the human papova virus BK and pSV-neo. The vector contains a dioxin-responsive enhancer (DRE) controlling a mouse mammary tumor virus (MMTV) promoter for the inducible expression of inserted genes. In human cells the vector replicates episomally, presumably utilizing the BKV rather than the SV40 origin, and expresses the BK T/t antigens. A deletion in the late BK region precludes the expression of the core/capsid proteins VP1, VP2, and VP3, thereby preventing the infectious lytic cycle. HeLa cells which were transfected with this vector and selected for resistance to the antibiotic G418 maintained the construct primarily in episomal form during more than one year of continuous culture, with little or no integration into the host genome. Transformed cells cultured in higher concentrations of G418 contained higher copy numbers of the vector. This permits one to vary the dosage of an inserted gene easily and reversibly without the need of conventional amplification techniques and clonal analysis. Using a chloramphenicol acetyl transferase (CAT) reporter gene inserted downstream of the MMTV promoter, we found that CAT expression was greater in clones with higher vector copy number. CAT expression was inducible with 2,3,7,8-tetrachlorodibenzo-p-dioxin, but inducibility was found to be inversely proportional to the copy number. Transformation of bacteria with plasmid molecules retrieved from the mammalian host was efficient, making this vector well adapted for the screening of cDNA libraries for the ability to express a phenotype in mammalian cells. Moreover, DNA sequences were stable during long-term passage in mammalian cells; vector passaged continuously for more than one year retained fully functional bacterial genes for resistance to chloramphenicol and ampicillin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号