首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the absence of high levels of resistance to Helicoverpa armigera (Hübner) in the cultivated germplasm of chickpea, we evaluated accessions of Cicer spp. mostly Cicer reticulatum Ladzinsky, for resistance to this important pest. Under multichoice conditions in the field, 10 accessions showed lower leaf damage and lower numbers of eggs, larvae, or both of H. armigera. Of these, IG 69960, IG 72934, and IG 72936 showed significantly lower leaf feeding than the cultivated genotypes or other accessions at the vegetative and reproductive stages. Larval weight was lower or comparable with that on C. bijugum (IG 70019) and C. judaicum (IG 70032) in C. reticulatum accessions IG 72933, IG 72934, IG 72936, and IG 72953 at the seedling stage and on IG 69960 and IG 72934 at the flowering stage. The accessions showing resistance to H. armigera in the field and laboratory conditions were placed in different groups, indicating the presence of diversity in C. reticulatum accessions for resistance to this pest. Less than seven larvae survived on IG 70020, IG 72940, IG 72948, and IG 72949, and IG 72964 compared with 12 on ICC 506. Larval and total developmental periods were prolonged by 6-15 and 3-8 d, respectively, on C. reticultatum accessions compared with those on ICCC 37. Less than five larvae pupated on the C. reticulatum accessions (except IG 72958 and ICC 17163) compared with 11 in ICCC 37. Accessions showing lower leaf feeding and adverse effects on the survival and development can be used in increasing the levels and diversifying the basis of resistance to H. armigera in chickpea.  相似文献   

2.
The noctuid pod borer, Helicoverpa armigera is a major pest of chickpea, and host plant resistance is an important component for managing this pest. We evaluated a set of diverse chickpea genotypes with different levels of resistance to H. armigera, and their F1 hybrids for oviposition non-preference, antibiosis, and tolerance components of resistance under uniform insect infestation under greenhouse/laboratory conditions. The genotypes ICC 12476, ICC 12477, ICC 12478, ICC 12479, and ICC 506EB were non-preferred for oviposition under no-choice, dual-choice, and multi-choice conditions, and also suffered lower leaf damage in no-choice tests as compared to the susceptible check, ICCC 37. Antibiosis expressed in terms of low larval weights was observed in insects reared on ICC 12476, ICC 12478, and ICC 506EB. Weight gain by the third-instars was also low on ICC 12476, ICC 12477, ICC 12478, ICC 12479, and ICC 506EB at the podding stage. Non-preference for oviposition and antibiosis (poor larval growth) were also expressed in hybrids based on ICC 12477, ICC 12476, ICC 12478, ICC 12479, and ICC 506EB as compared to the hybrids based on the susceptible check, ICCC 37, indicating that oviposition non-preference and antibiosis in the F1 hybrids is influenced by the parent genotype. Loss in grain yield was lower in ICC 12477, ICC 12478, ICC 12479, and ICC 506EB compared to that on ICCC 37. The genotypes ICC 12477, ICC 12478, ICC 12479, and ICC 506EB showing antixenosis, antibiosis, and tolerance mechanism of resistance to H. armigera can be used for developing chickpea cultivars for resistance to this pest.  相似文献   

3.
The noctuid Helicoverpa armigera (Hübner) is a major insect pest of chickpea Cicer arietinum L., pigeonpea Cajanus cajan (L.) Millsp., peanut Arachis hypogaea L., and cotton Gossypium spp., and host plant resistance is an important component for managing this pest in different crops. Because of variations in insect density and staggered flowering of the test material, it is difficult to identify cultivars with stable resistance to H. armigera across seasons and locations. To overcome these problems, we standardized the detached leaf assay to screen for resistance to this pest in chickpea, pigeonpea, peanut, and cotton under uniform insect pressure under laboratory conditions. Terminal branch (three to four fully expanded leaves) of chickpea, first fully expanded leaf of cotton, trifoliate of pigeonpea, or quadrifoliate of peanut, embedded in 3% agar-agar in a plastic cup/jar of appropriate size (250-500-ml capacity) infested with 10-20 neonate larvae can be used to screen for resistance to H. armigera. This technique keeps the leaves in a turgid condition for approximately 1 wk. The experiments can be terminated when the larvae have caused > 80% leaf damage in the susceptible check or when differences in leaf feeding between the resistant and susceptible checks are maximum. Detached leaf assay can be used as a rapid screening technique to evaluate germplasm, segregating breeding materials, and mapping populations for resistance to H. armigera in a short span of time with minimal cost, and under uniform insect infestation. It also provides useful information on antibiosis component of resistance to the target insect pest.  相似文献   

4.
Abstract Helicoverpa armigera oviposition preference for, and larval development on sorghum hybrids with differing resistance to sorghum midge, Stenodiplosis sorghicola , were investigated. When H. armigera larvae were fed seed of resistant and susceptible hybrids in the laboratory there were no differences in larval and pupal sizes or the rate of development. The same result was recorded when larvae fed on panicles on plants in a glasshouse. On some sampling occasions, significantly more eggs were laid on panicles of resistant hybrids in the field. This occurred when plants were in plots and also in a mixed planting. Midge-resistance status did not affect levels of egg parasitism. In a field study using recombinant inbred lines between a midge-resistant and a midge-susceptible line, no relationship was found between level of resistance and oviposition of H. armigera . We conclude that, although midge-resistant hybrids are sometimes preferred for oviposition by H. armigera, the resistance per se does not determine this preference. Egg survival, larval survival, development and resultant damage are not significantly affected by the midge-resistance status of the host.  相似文献   

5.
Biological activity of the bacterium Bacillus thuringiensis Berliner (Bt) against insect pests is influenced by the host plants. To understand the underlying mechanism of variation in biological activity of Bt on host plants, we studied the effect of chemicals from the surface of chickpea (Cicer arietinum L., Fabaceae) leaves (ICCC 37 and ICC 506EB), sorghum [Sorghum bicolor (L.) Moench, Poaceae] grain (ICSV 745 and IS 18698), pigeon pea [Cajanus cajan (L.) Millsp., Fabaceae] pods (ICPL 87 and ICPL 332WR), and cotton (Gossypium hirsutum L., Malvaceae) squares (RCH 2 and Bt RCH 2), on which Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) feeds under natural conditions. Surface chemicals extracted in water from host plant leaves were added to the standard artificial diet containing a commercial formulation of Bt or Cry1Ac. Data were recorded on larval and pupal weights, pupation, adult emergence, larval and pupal periods, adult longevity, and fecundity. Weights of H. armigera at 5 days after initiation of the experiment were significantly reduced on artificial diets containing Bt + pod washings of ICPL 87 and ICPL 332WR, grain washings of ICSV 745, or square washings of RCH 2, and Cry1Ac + leaf‐surface washings of ICC 506EB. Pupal weights were lower on diets containing leaf‐surface washings of ICCC 37 + Bt than on standard artificial diet. Larval periods were prolonged on diets containing Bt + leaf‐surface washings of ICCC 37, pod washings of ICPL 87, and square washings of RCH 2, and on standard artificial diet + Cry1Ac. Pupation was significantly higher on standard artificial diet + Cry1Ac than on diets with Bt + grain washings of ICSV 745 and Cry1Ac + square washings of RCH 2 and Bt RCH 2. Adult emergence was lowest on diets with square washings of RCH 2 + Bt and grain washings of ICSV 745 + Cry1Ac. The results suggested that leaf‐surface washings play an important role in biological activity of Bt/Cry1Ac against H. armigera.  相似文献   

6.
We investigated the potential of heterorhabditid nematodes to control larvae of the black vine weevil, Otiorhynchus sulcatus (F.), in 2 field experiments in commercial strawberry plantings. In both experiments, nematodes were applied directly onto the straw mulch, or onto the soil after temporary removal of the mulch. Heterorhabditis marelatus Lui & Berry (Rhabditida: Heterorhabditidae) reduced numbers of weevil larvae and the percentage of plants infested in both experiments, irrespective of straw removal. In the 1st field experiment, a sponge-packed H. marelatus formulation produced lower numbers of O. sulcatus larvae per strawberry plant (mean O. sulcatus larvae per plant = 0.7) and proportion of infested plants (42%) compared with a vermiculite formulation (mean O. sulcatus larvae per plant = 1.8, proportion infested plants 67%) and an untreated control (mean O. sulcatus larvae per plant = 1.9, proportion infested plants 75%). In the first 2 wk after application, more H. marelatus were found in soil samples collected from plots treated with sponge-packed nematodes, than from plots treated with vermiculite-formulated nematodes. In the 2nd field experiment, sponge-packed formulations of H. bacteriophora Poinar (Rhabditida: Heterorhabditidae) and H. marelatus were tested. H. marelatus caused a reduction in both numbers of weevil larvae (mean O. sulcatus larvae per plant = 0.1) and proportion of infested plants (9%) but H. bacteriophora did not (mean O. sulcatus larvae per plant = 0.45, proportion infested plants 34%). More H. bacteriophora were recovered from soil samples than H. marelatus during the first 7 d of this experiment. However, laboratory studies revealed no difference in the persistence of these 2 nematodes in sand.  相似文献   

7.
The resistance/susceptibility levels of ten maize (Zea mays L.) cultivars to neonates and 3rd-instar larvae of Chilo partellus (Swinhoe) (Lepidoptera: Pyralidae) were measured in the field and screenhouse experiments. The maize cultivars tested were: Inbred A, Mp 704, V-37, Population 10, Hybrid 511, Katumani Composite B, ER-29 SVR, Poza Rica 7832, ICZ2-CM, and MMV 400. Most cultivars were found susceptible to 3rd-instar larvae based on the incidence of dead heart symptoms, foliar feeding and stem tunnelling caused by stem borers in both the field and screenhouse experiments. However, the maize cultivars V-37, MMV 400 and Poza Rica 7832 sustained significantly lesser damage than the other cultivars when infested with neonates or 3rd instar larvae.The screenhouse experiments conducted with five maize cultivars, i.e. Inbred A, Mp 704, V-37, ER-29 SVR, and Poza Rica 7832 showed that neonates fed less on the resistant than the susceptible maize cultivars but feeding by the 3rd instars was equally high on all the maize cultivars except Mp 704 on which the larvae fed less than the others. In the cultivars infested with neonates, the mean period for 50% moth emergence P50 was longest on Mp 704 followed by Poza Rica 7832, ER-29 SVR, V-37 and Inbred A. In the cultivars infested with 3rd-instars, P50 was longest for Poza Rica 7832 followed equally by the remaining cultivars.On the basis of the evidence presented we here conclude that neonates of C. partellus are sensitive to the growth inhibiting effects of the resistant maize cultivars Mp 704, V-37, and Poza Rica 7832 but the older larvae are insensitive to these effects of Mp 704 and V-37 but not of Poza Rica 7832.  相似文献   

8.
Larvae of the Old World corn earworm, Helicoverpa armigera (Hübner), were fed diets containing lyophilized silks from maize genotypes expressing varying levels of maysin, a flavone glycoside known to be toxic to the New World corn earworm, Helicoverpa zea Boddie. Three different H. armigera colonies were tested: a wild-type colony (96-S), a colony selected for resistance to deltamethrin (Del-R), and a colony selected for resistance to the Cry1Ac protoxin of Bacillus thuringiensis (Bt-R). A colony of H. zea was also tested as a control. High-maysin silk diets significantly slowed the growth and arrested the development of larvae from all H. armigera colonies compared with low-maysin silk diets, maysin-lacking silk diets, and no-silk control diets. The effects on the H. armigera and H. zea colonies were similar across maysin levels, although H. zea is a larger insect than H. armigera and this overall size difference was observed. Among the H. armigera colonies, maysin effects were generally similar, although 7-d-old Del-R larvae were significantly smaller than 7-d-old Bt-R and 96-S larvae for one no-silk control and two maysin-containing silk treatments. The toxic effect of maysin on the Bt-R and Del-R colonies suggests that physiological mechanisms of H. armigera resistance to Cry1Ac and deltamethrin do not confer cross-resistance to maysin.  相似文献   

9.
Abstract:  Understanding how insect pests forage on their food plants can help optimize management strategies. Helicoverpa armigera (Hübner) (Lep., Noctuidae) is a major polyphagous pest of agricultural crops worldwide. The immature stages feed and forage on crops at all stages of plant development, damaging fruiting and non-fruiting structures, yet very little is known about the influence of host type or stage on the location and behaviour of larvae. Through semi-continuous observation, we evaluated the foraging (movement and feeding) behaviours of H. armigera first instar larvae as well as the proportion of time spent at key locations on mungbean [ Vigna radiata (L.) Wilczek] and pigeon pea [ Cajanus cajan (L.) Millspaugh] of differing developmental stages: seedling- and mature (flowering/pod fill)-stage plants. Both host type and age affected the behaviour of larvae. Larvae spent more time in the upper parts of mature plants than on seedlings and tended to stay at the top of mature plants if they moved there. This difference was greater in pigeon pea than in mungbean. The proportion of time allocated to feeding on different parts of a plant differed with host and age. More feeding occurred in the top of mature pigeon pea plants but did not differ between mature and seedling mungbean plants. The duration of key behaviours did not differ between plant ages in either crop type and was similar between hosts although resting bouts were substantially longer on mungbeans. Thus a polyphagous species such as H. armigera does not forage in equivalent ways on different hosts in the first instar stage.  相似文献   

10.
The gram pod borer, Helicoverpa armigera, is one of the most important constraints to chickpea production. High acidity of chickpea exudates is associated with resistance to pod borer, H. armigera; however, acidic exudates in chickpea might influence the biological activity of the bacterium, Bacillus thuringiensis (Bt), applied as a foliar spray or deployed in transgenic plants for controlling H. armigera. Therefore, studies were undertaken to evaluate the biological activity of Bt towards H. armigera on chickpea genotypes with different amounts of organic acids. Significantly lower leaf feeding, larval survival and larval weights were observed on ICC 506EB, followed by C 235, and ICCV 10 across Bt concentrations. Leaf feeding by the larvae and larval survival and weights decreased with an increase in Bt concentration. However, rate of decrease in leaf feeding and larval survival and weights with an increase in Bt concentration was greater on L 550 and ICCV 10 than on the resistant check, ICC 506EB, suggesting that factors in the resistant genotypes, particularly the acid exudates, resulted in lower levels of biological activity of Bt possibly because of antifeedant effects of the acid exudates. Antifeedant effects of acid exudates reduced food consumption and hence might reduce the efficacy of Bt sprays on insect‐resistant chickpea genotypes or Bt‐transgenic chickpeas, although the combined effect of plant resistance based on organic acids, and Bt had a greater effect on survival and development of H. armigera than Bt alone.  相似文献   

11.
Zhu JQ  Liu S  Ma Y  Zhang JQ  Qi HS  Wei ZJ  Yao Q  Zhang WQ  Li S 《PloS one》2012,7(6):e38572
The adoption of pest-resistant transgenic plants to reduce yield loss and pesticide utilization has been successful in the past three decades. Recently, transgenic plant expressing double-stranded RNA (dsRNA) targeting pest genes emerges as a promising strategy for improving pest resistance in crops. The steroid hormone, 20-hydroxyecdysone (20E), predominately controls insect molting via its nuclear receptor complex, EcR-USP. Here we report that pest resistance is improved in transgenic tobacco plants expressing dsRNA of EcR from the cotton bollworm, Helicoverpa armigera, a serious lepidopteran pest for a variety of crops. When H. armigera larvae were fed with the whole transgenic tobacco plants expressing EcR dsRNA, resistance to H. armigera was significantly improved in transgenic plants. Meanwhile, when H. armigera larvae were fed with leaves of transgenic tobacco plants expressing EcR dsRNA, its EcR mRNA level was dramatically decreased causing molting defects and larval lethality. In addition, the transgenic tobacco plants expressing H. armigera EcR dsRNA were also resistant to another lepidopteran pest, the beet armyworm, Spodoptera exigua, due to the high similarity in the nucleotide sequences of their EcR genes. This study provides additional evidence that transgenic plant expressing dsRNA targeting insect-associated genes is able to improve pest resistance.  相似文献   

12.
The use of genetically modified (Bt) crops expressing lepidopteran-specific Cry proteins derived from the soil bacterium Bacillus thuringiensis is an effective method to control the polyphagous pest Helicoverpa armigera. As H. armigera potentially develops resistance to Cry proteins, Bt crops should be regarded as one tool in integrated pest management. Therefore, they should be compatible with biological control. Bioassays were conducted to understand the interactions between a Cry2Aa-expressing chickpea line, either a susceptible or a Cry2A-resistant H. armigera strain, and the entomopathogenic fungus Metarhizium anisopliae. In a first concentration-response assay, Cry2A-resistant larvae were more tolerant of M. anisopliae than susceptible larvae, while in a second bioassay, the fungus caused similar mortalities in the two strains fed control chickpea leaves. Thus, resistance to Cry2A did not cause any fitness costs that became visible as increased susceptibility to the fungus. On Bt chickpea leaves, susceptible H. armigera larvae were more sensitive to M. anisopliae than on control leaves. It appeared that sublethal damage induced by the B. thuringiensis toxin enhanced the effectiveness of M. anisopliae. For Cry2A-resistant larvae, the mortalities caused by the fungus were similar when they were fed either food source. To examine which strain would be more likely to be exposed to the fungus, their movements on control and Bt chickpea plants were compared. Movement did not appear to differ among larvae on Bt or conventional chickpeas, as indicated by the number of leaflets damaged per leaf. The findings suggest that Bt chickpeas and M. anisopliae are compatible to control H. armigera.  相似文献   

13.
The efficacy of Cry1Ac Bacillus thuringiensis (Bt) cotton plants against field populations of Helicoverpa armigera (Hübner) has been inconsistent over the growing season. Any reduction in efficacy (where efficacy is the capacity of the plant to affect the survival of the insect) increases the opportunities for H. armigera to evolve resistance to Bt toxin. Changes in efficacy could be due to changes at the level of gene expression and/or in the physiological makeup of the plant and may be induced by environmental conditions. Two environmental factors, temperature and insect damage, were investigated. Temperature was found to affect efficacy, whether plants were grown at different temperatures continuously or were exposed to a change in temperature for a short period. Damage caused by chewing insects (H. armigera larvae) produced a dramatic increase in the efficacy of presquare Bt cotton. In contrast, damage by sucking insects (aphids) did not induce changes in efficacy. Changes in efficacy seemed to be mediated through modification of the physiological background of the plant rather than changes in the level of Cry1Ac expression or in the concentration of the Bt toxin. The impact of the non-Bt responses of plants on strains of H. armigera should be evaluated. It is possible that by enhancing existing defensive mechanisms of plants, the rate of evolution of resistance to Bt toxins could be retarded by increasing the plants overall toxicity through the additive effects of the toxins and plant defenses.  相似文献   

14.
Transgenic crops expressing toxin proteins from Bacillus thuringiensis (Bt) have been deployed on a large scale for management of Helicoverpa armigera. Resistance to Bt toxins has been documented in several papers, and therefore, we examined the role of midgut microflora of H. armigera in its susceptibility to Bt toxins. The susceptibility of H. armigera to Bt toxin Cry1Ac was assessed using Log‐dose‐Probit analysis, and the microbial communities were identified by 16S rRNA sequencing. The H. armigera populations from nine locations harbored diverse microbial communities, and had some unique bacteria, suggesting a wide geographical variation in microbial community in the midgut of the pod borer larvae. Phylotypes belonging to 32 genera were identified in the H. armigera midgut in field populations from nine locations. Bacteria belonging to Enterobacteriaceae (Order Bacillales) were present in all the populations, and these may be the common members of the H. armigera larval midgut microflora. Presence and/or absence of certain species were linked to H. armigera susceptibility to Bt toxins, but there were no clear trends across locations. Variation in susceptibility of F1 neonates of H. armigera from different locations to the Bt toxin Cry1Ac was found to be 3.4‐fold. These findings support the idea that insect migut microflora may influence the biological activity of Bt toxins.  相似文献   

15.
【背景】转Bt基因抗虫棉已经在我国进行了近20年的大规模商业化种植,产生了显著的经济和环境效益。但是,靶标害虫棉铃虫的抗性是转Bt基因抗虫棉产业健康发展所面临的最大问题,而抗性监测是解决这一问题的必要管理措施。盐城市是江苏省转基因抗虫棉的主产区,但有关该地区棉铃虫对转Bt基因抗虫棉的抗性基因频率未见报道。【方法】于2012年在盐城三龙镇和东台镇棉区采集田间棉铃虫种群,检测了初孵幼虫对花铃期转Bt基因抗虫棉中30幼嫩叶片的敏感性,用区分剂量法检测了2龄幼虫对Bt蛋白的抗性基因频率。【结果】取食转Bt基因抗虫棉叶片后,棉铃虫初孵幼虫在9 d内全部死亡;三龙镇和东台镇棉铃虫2龄幼虫对Bt蛋白的抗性基因频率分别为7.6×10-3和6.9×10-3。【结论与意义】目前,盐城棉区的棉铃虫对转Bt基因抗虫棉仍保持很高的敏感性,棉铃虫种群对Bt蛋白的抗性基因频率没有发生显著变化,但仍需持续监测。  相似文献   

16.
H Guo  Y Sun  Q Ren  K Zhu-Salzman  L Kang  C Wang  C Li  F Ge 《PloS one》2012,7(7):e41426
Both resistance and tolerance, which are two strategies that plants use to limit biotic stress, are affected by the abiotic environment including atmospheric CO(2) levels. We tested the hypothesis that elevated CO(2) would reduce resistance (i.e., the ability to prevent damage) but enhance tolerance (i.e., the ability to regrow and compensate for damage after the damage has occurred) of tomato plants to the cotton bollworm, Helicoverpa armigera. The results showed that elevated CO(2) reduced resistance by decreasing the jasmonic acid (JA) level and activities of lipoxygenase, proteinase inhibitors, and polyphenol oxidase in wild-type (WT) plants infested with H. armigera. Consequently, the activities of total protease, trypsin-like enzymes, and weak and active alkaline trypsin-like enzymes increased in the midgut of H. armigera when fed on WT plants grown under elevated CO(2). Unexpectedly, the tolerance of the WT to H. armigera (in terms of photosynthetic rate, activity of sucrose phosphate synthases, flower number, and plant biomass and height) was also reduced by elevated CO(2). Under ambient CO(2), the expression of resistance and tolerance to H. armigera was much greater in wild type than in spr2 (a JA-deficient genotype) plants, but elevated CO(2) reduced these differences of the resistance and tolerance between WT and spr2 plants. The results suggest that the JA signaling pathway contributes to both plant resistance and tolerance to herbivorous insects and that by suppressing the JA signaling pathway, elevated CO(2) will simultaneously reduce the resistance and tolerance of tomato plants.  相似文献   

17.
In three field experiments in Kenya , the seasonal population trend of Helicoverpa armigera (Hubner) (= Heliothis armigera) in sunflower was followed in plots from which predators were excluded and in plots from which predators were not excluded . In experiment 1 , complete exclusion of crawling predators (predominantly Pheidole spp . of ants occurring at densities of 25 per plant) resulted in H. armigera densities 3 - 5 times higher than in plots where ants were not excluded . Pheidole sp . had more impact on young H. armigera larvae (instars 2 - 3) than on older larvae (instars 4 - 6) . The results of experiment 2 were less striking , because H. armigera infestation was low , and ant densities were moderate . Here , Myrmicaria spp . and Camponotus spp . were the predominant ants . Exclusion of ants resulted in a 1 . 8 - fold increase in densities of large H. armigera instars . In experiment 3 , the impact of predators on H. armigera was studied under three conditions: exclusion of crawling predators , exclusion of both crawling and flying predators , and the control where no predators were excluded . To evaluate the role of predation in total mortality , the recruitment of H. armigera larvae was determined with Southwood and Jepson ' s graphical method , and recruitment of newly laid eggs was directly measured on trap plants . Because it was difficult to detect older eggs due to colour change , the direct measurement of egg recruitment was superior to the graphical method . Ants and Anthocoridae were the dominant predators . M ortality from egg to older larvae (instars 4 - 6) was 73 - 78% . Exclusion of ants and anthocorids did not affect the densities of H. armigera larvae . Anthocorid predators increased only after the main oviposi tion peak of H. armigera and , therefore , their exclusion had little impact on the pest . Ant density was considerably lower than in experiment 1 , and did not significantly suppress H. armigera.  相似文献   

18.
研究中红侧沟茧蜂Microplitis mediator Haliday对棉铃虫Helicoverpa armigera Hübner幼虫及其为害棉株的趋性行为, 可为高效应用中红侧沟茧蜂控制棉铃虫提供理论依据。本研究在实验室内以中红侧沟茧蜂雌蜂、1~5龄棉铃虫幼虫及其为害棉花植株(去虫或未去虫)为试验材料, 采用“Y”型昆虫嗅觉仪测定了中红侧沟茧蜂雌蜂对1~5龄棉铃虫幼虫及其为害棉株的趋性行为反应。结果表明: 中红侧沟茧蜂对3龄、4龄和5龄棉铃虫幼虫均没有明显的趋向行为反应, 1龄和2龄棉铃虫幼虫对中红侧沟茧蜂有显著的引诱作用。此外, 1~5龄棉铃虫幼虫为害后去虫棉株与健康棉株均对中红侧沟茧蜂有吸引作用。在未去虫的处理中, 虫害诱导棉株比健康植株更能吸引中红侧沟茧蜂, 与健康植株差异显著, 而且不同龄期棉铃虫幼虫为害处理间差异较大, 对中红侧沟茧蜂引诱作用的相对顺序为: 5龄为害植株>2龄和4龄为害植株>1龄和3龄为害植株 (2龄和4龄为害处理间差异不显著; 1龄和3龄为害处理间差异不显著)。本研究结果可为中红侧沟茧蜂在生物防治上的应用提供一定的理论指导和实践依据。  相似文献   

19.
Helicoverpa armigera is a devastating pest of cotton and other important crop plants all over the world. A detailed biochemical investigation of H. armigera gut proteinases is essential for planning effective proteinase inhibitor (PI)-based strategies to counter the insect infestation. In this study, we report the complexity of gut proteinase composition of H. armigera fed on four different host plants, viz. chickpea, pigeonpea, cotton and okra, and during larval development. H. armigera fed on chickpea showed more than 2.5- to 3-fold proteinase activity than those fed on the other host plants. H. armigera gut proteinase composition revealed the predominance of serine proteinase activity; however, the larvae fed on pigeonpea revealed the presence of metalloproteases and low levels of aspartic and cysteine proteases as well. Gut proteinase activity increased during larval development with the highest activity seen in the fifth instar larvae which, however, declined sharply in the sixth instar. Over 90% of the gut proteinase activity of the fifth instar larvae was of the serine proteinase type, however, the second instar larvae showed the presence of proteinases of other mechanistic classes like metalloproteases, aspartic and cysteine proteases along with serine proteinase activity as evident by inhibition studies. Analysis of fecal matter of larvae showed significant increase in proteinase activity when fed on an artificial diet with or without non-host PIs than larvae fed on a natural diet. The diversity in the proteinase activity observed in H. armigera gut and the flexibility in their expression during developmental stages and depending upon the diet provides a base for selection of proper PIs for insect resistance in transgenic crop plants.  相似文献   

20.
Transgenic cotton (Cossypium hirsutum L.) varieties, adapted to China, have been bred that express two genes for resistance to insects, the CrylAc gene from Bacillus thuringiensis (Berliner) (Bt), and a trypsin inhibitor gene from cowpea (CpTI). Effectiveness of the double gene modification in conferring resistance to cotton bollworm, Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae), was studied in laboratory and field experiments. In each experiment, performance of Bt+CpTI cotton was compared with Bt cotton and to a conventional nontransgenic variety. Larval survival was lower on both types of transgenic variety, compared with the conventional cotton. Survival of first-, second-, and third-stage larvae was lower on Bt+CpTI cotton than on Bt cotton. Plant structures differed in level of resistance, and these differences were similar on Bt and Bt + CpTI cotton. Likewise, seasonal trends in level of resistance in different plant structures were similar in Bt and Bt+CpTI cotton. Both types of transgenic cotton interfered with development of sixth-stage larvae to adults, and no offspring was produced by H. armigera that fed on Bt or Bt+CpTI cotton from the sixth stage onward. First-, second-, and third-stage larvae spent significantly less time feeding on transgenic cotton than on conventional cotton, and the reduction in feeding time was significantly greater on Bt+CpTI cotton than on Bt cotton. Food conversion efficiency was lower on transgenic varieties than on conventional cotton, but there was no significant difference between Bt and Bt+CpTI cotton. In 3-yr field experimentation, bollworm densities were greatly suppressed on transgenic as compared with conventional cotton, but no significant differences between Bt and Bt+CpTI cotton were found. Overall, the results from laboratory work indicate that introduction of the CpTI gene in Bt cotton raises some components of resistance in cotton against H. armigera, but enhanced control of H. armigera under field conditions, due to expression of the CpTI gene, was not demonstrated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号